
Querying the Semantic Web with Preferences

Wolf Siberski1, Jeff Z. Pan2, and Uwe Thaden1

1 L3S and University of Hannover, Hannover
{siberski,thaden}@l3s.de

2 University of Aberdeen
jpan@csd.abdn.ac.uk

Abstract. Ranking is an important concept to avoid empty or overfull and un-
ordered result sets. However, such scoring can only express total orders, which
restricts its usefulness when several factors influence result relevance. A more
flexible way to express relevance is the notion of preferences. Users state which
kind of answers they ‘prefer’ by adding soft constraints to their queries.
Current approaches in the Semantic Web offer only limited facilities for specifica-
tion of scoring and result ordering. There is no common language element to ex-
press and formalize ranking and preferences. We present a comprehensive exten-
sion of SPARQL which directly supports the expression of preferences. This in-
cludes formal syntax and semantics of preference expressions for SPARQL. Ad-
ditionally, we report our implementation of preference query processing, which
is based on the ARQ query engine.

Keywords preferences, query language, semantic web

1 Introduction

With the abundance of available information, the issue of information filtering becomes
more and more pressing. Instead of receiving empty or possibly huge and unordered
result sets, users want to get just a manageable set of ‘best’ answers, which satisfy the
query best, even if there are no exact matches.

As widely established in information retrieval and other areas, ranking has shown
to be useful to improve the quality of result lists. As more and more Semantic Web
applications emerge, this aspects gains importance for the information available in that
context. However, the current Web solutions for ‘best’ answers are not easily applicable
to this new context. User queries usually consist of a set of words that have to appear
in the document and/or in some metadata of the documents. The support for structured
search is very limited; only very first steps in the direction of integrating structured
information, such as taxonomies, have been taken.

On the other hand, the benefit of introducing the ‘best match’ notion has already
been identified for several Semantic Web applications (e.g., [1–3]). For example, Bib-
ster [3] allows to search for publications by topic and ranks results according to their
similarity to the requested topic. However, the preferences used in these systems typ-
ically apply to specific properties, and hard-coded, unmodifiable scoring functions are
used.

2 Wolf Siberski, Jeff Z. Pan, and Uwe Thaden

The same issue has been tackled in database research in the last years. Top-k queries
have been introduced which allow to identify the ‘best matches’ according to a numer-
ical score [4]. Skyline queries have extended this notion to contexts where multiple
independent scores have to be taken into account [5]. The most general notion devel-
oped in the database area is the notion of preference-based querying [6, 7], where logic
formulas can be used to specify which items are preferred.

Preference queries are based on the observation that expressions of the form “I like
A more than B” are easily stated by users when asked for their wishes. For example,
when buying a car, it is easy for one to say which colors he prefers, that he likes cars
more for which he has to pay less, that he likes automatic transmission more than man-
ual gear change, etc. Therefore, it should be optimal if a query engine can derive best
matches directly from such preference expressions.

The notion of preference is very important in the Semantic Web context, too. Ac-
tually, we show in Section 2 that the motivating example from the seminal Semantic
Web article [8] written by Tim Berners-Lee et al. can in fact be easily interpreted as
preference-based search. A variety of potential Semantic Web applications can ben-
efit from preference queries, e.g. advanced document search or service matchmaking
(cf. Section 6).

Therefore, we propose to add preference-based querying capabilities to Semantic
Web query languages. As SPARQL is currently the most important of these query lan-
guages, we have used it as basis to formally integrate and implement such capabilities
as language extension.

2 Motivating Example

In this section we revisit the motivating scenario from [8] in detail. We use this example
to show how preferences fit into the Semantic Web vision, and what is needed to specify
preferences as part of a query in an informal fashion.

Let us first summarize the scenario: Lucy and Pete are looking for suitable appoint-
ments at a physical therapist for their Mom3. They have some hard constraints for their
search with respect to therapist rating, location, etc., which are not relevant in our con-
text. We therefore only keep the constraint that the therapist’s rating must be very good
or excellent.

When Pete sees the first answer to this search, it turns out that there are also some
soft constraints he did not consider yet. Therefore, he has to reformulate his query with
“stricter preferences”. The following preferences can be identified:

1. prefer a nearer therapist over one more far away.
2. prefer excellent therapists over very good ones.
3. prefer an appointment which does not overlap with the rush hour.
4. prefer appointments with a late starting time over early ones, to avoid the necessity

to leave during the work hours.

If these preferences would be expressed as hard constraints, this would most likely
lead to an empty result set, because it happens rarely that a result matches exactly to the

3 Note that here we do not aim at providing an agent environment as sketched in [8].

Querying the Semantic Web with Preferences 3

optimal values with respect to each single preference in the query. The usual case is a
trade-off, i.e. results optimal with respect to one dimension tend to have disadvantages
in other dimensions. Therefore, a user would have to adapt to the system and relax his
query manually (typically by try and error), until some suitable results are found.

Furthermore, in multidimensional queries a user normally is not able to prioritize
his different preferences, since he does not know how this will affect the outcome. Is it
more important to to have a nearby appointment or is it more important to avoid rush-
hour? Is it more important to have an excellent therapist, or more important to get a
late appointment? Typically these trade-offs are not weighed by the user in advance,
but only when he sees the different options with their concrete advantages and disad-
vantages. Therefore, it has to be possible to specify multiple (independent) preference
dimensions. Note that with current Semantic Web query languages such as SPARQL
this is not possible (cf. Section 3.2).

To specify the mentioned preferences, we need atomic preference expressions and
facilities for combination. For atomic preferences, two types can be distinguished:

– Boolean preferences expressed by a boolean condition (preference 2 and 3 from the
example). Results satisfying that condition are preferred over results which do not
satisfy it.

– Scoring preferences specified by a value expression (preferences 1 and 4) . Results
for which this expression leads to a higher value are preferred over results with a
lower value (rsp. the other way round).

While we do not want to force the user to prioritize all of his preferences, for some
preferences it might be desired to specify priorities. For example, it might be more
important to Pete to avoid rush hour than to get a late appointment. Therefore we need
two different ways to combine preferences, one for independent preferences and one
for prioritized ones.

Now we take a look at what results a user would actually expect for given prefer-
ences. To simplify the presentation, we omit some hard constraints and preferences of
the example, and continue with a reduced query:
Return all excellent and very good therapists, with the following preferences:

Prefer excellent therapists over very good ones (preference 2).
Prefer appointments outside rush hour over appointments overlapping it
(preference 3).

Prefer the later appointment over an earlier one, if both are equal
with respect to rush hour (preference 4).

Note that this removes no complexity with respect to preference specification.
A sample knowledge base on which the query can be executed is shown in Figure 1.

Physical therapists have an associated rating and associated appointments. Appoint-
ments have start and end time.

Based on this knowledge base, let us analyze what a user would expect as results.
Definitely, he does not want to get any result A which is worse than another one B with
respect to one preference dimension, and not better in any other dimension. If this is
the case, we say that A is dominated by B. The interesting results are therefore those
which are not dominated by others.

4 Wolf Siberski, Jeff Z. Pan, and Uwe Thaden

pt:rated <#john>

pt:excellent

pt:very-good

pt:offers

<#appointment 5>
pt:starts
pt:ends

19:00

19:55

<#mary>pt:rated

pt:offers

<#appointment 1>
pt:starts
pt:ends

15:00

15:55

pt:offers <#appointment 2> pt:starts
pt:ends

16:00

16:55

pt:offers

<#appointment 3>
pt:starts
pt:ends

17:00

17:55

pt:offers
<#appointment 4> pt:starts

pt:ends

18:00

18:55

Fig. 1. Example Knowledge Base

We assume that rush hour is from 16:00 to 18:00. Then, as Figure 2 shows, the
non-dominated results are appointment1 and appointment5. appointment1 is in every
preference dimension better or equal to appointment2 and appointment3. The same
applies to appointment5 with respect to appointment4. The hatched regions denote the
domination areas of these results: all answers lying in these areas are dominated and
thus not optimal. On the other hand, appointment1 and appointment5 can’t dominate
each other, because appointment1 is better with respect to rating, but appointment5 is
superior with respect to appointment time. Therefore, these two should be returned as
result to the user.

We will show in Section 3.2 what part of the requirements derived from the exam-
ple SPARQL can cover, and pick up the scenario to illustrate our proposed language
extension in Section 4.

better

be
tte

r

Domination Area of
<#appointment5>

Domination Area of
<#appointment1>

<#appointment 1><#appointment 3><#appointment 2>

ra
tin

g
pr

ef
er

en
ce

time preference

<#appointment 5><#appointment 4>

rating
excellent

rating
very good

overlapping with rush hour outside rush hour

later later

Fig. 2. Appointment Preference Relations

Querying the Semantic Web with Preferences 5

3 Background

3.1 Querying with Preferences

Preferences have one of their origins in decision theory, as a way to support complex,
multifactorial decision processes [9]. Another important source are personalized sys-
tems (e.g. [10]), where preferences capture a users likings and dislikes. In databases,
this thread was picked up by Lacroix and Lavency [11].

Following Chomicki [7], we distinguish between quantitative and qualitative ap-
proaches to preferences. In quantitative approaches, each preference is associated with
an atomic scoring function, and combination operations are used to compute a score
for each result tuple [12]. This restricts the approach to total orderings of result tuples.
Top-k queries return the k best matches according to such a score [4]. A formal exten-
sion of relational algebra by a specific top-k operator has been proposed in [13]. The
qualitative approach is more general than the quantitative one. It does not impose a total
order on the result tuples, but allows treating preferences independently, which results
in a partial preference order. For relational databases, the qualitative approach has been
formalized independently by Kießling [6] and Chomicki [7].

In the following we rely on Chomicki’s preference query formalization [7]. In this
extension to relational algebra, preferences are expressed as binary relations between
tuples from the same database relation. The central concept is the notion of domination
(as introduced informally in the previous section).

Definition 1. Given a relation schema R(A1, . . . , An) such that Ui, 1 ≤ i ≤ n, is the
domain of the attribute Ai, a relation � is a preference relation over R if it is a subset
of (U1 × · · · × Un)× (U1 × · · · × Un). A result tuple t1 is said to be dominated by t2,
if t1 � t2.

We restrict this very general notion to relations that are defined by so-called intrinsic
preference formulas, first order logic expressions in which a limited set of constraint
operators occur.

Definition 2. Given a relation schema R, an intrinisic preference formula C(t1, t2) is
a first order formula over two tuples of R which only uses equality and rational order
(<, >) constraints. Such a preference formula C defines a preference relation �C:
t1 �C t2 ≡ C(t1, t2).

For a more convenient notation, we introduce an additional operator to denote in-
comparability between two result tuples.

Definition 3. Given a preference formula C and two tuples t1 and t2, the incompara-
bility operator ∼C is defined as

t1 ∼C t2 ≡ t1 6�C t2 ∧ t2 6�C t1.
If t1 either dominates t2 or is incomparable with it, this is denoted as

t1 �C t2 ≡ t1 �C t2 ∨ t1 ∼C t2.

Now we can define the new operator, called winnow operator, that selects all non-
dominated objects from a set of tuples.

6 Wolf Siberski, Jeff Z. Pan, and Uwe Thaden

Definition 4. If R is a relation schema and C a preference formula defining a prefer-
ence relation �C over R, the winnow operator ωC is defined as ωC(R), and for every
instance r of R:

ωC(r) = {t ∈ r|¬∃t′ ∈ r. t′ �C t}.

ωC therefore selects all non-dominated objects from a set of tuples. In Section 4,
we show how to apply these concepts for our extension of SPARQL.

3.2 Ontology Querying

An ontology [14] typically consists of a set of important classes, important proper-
ties, and constraints about these classes and properties. An ontology language provides
some constructors to construct class and property descriptions based on named classes
and properties, as well as some forms of axioms about classes, properties and indi-
viduals. For example, RDFS [15] provides some axioms (such as domain and range
axioms), but no class or property constructors. OWL DL [16] provides class construc-
tors (e.g. conjunction C uD and number restriction 6nR), property constructors (e.g.
inverse properties R−) and more kinds of axioms (such as individual equality axioms
a ≈ b) than RDFS. Furthermore, OWL DL distinguishes individual properties (prop-
erties relating individuals to individuals) from datatype properties (properties relating
individual to data literals). Data literals are literal forms of data values. Due to space
limitation, the reader is referred to [15] and [16] for details of the RDFS and OWL DL
languages, respectively.

A conjunctive query (CQ) q is of the form

q(X)← ∃Y .conj(X, Y, Z)

or simply q(X) ← conj(X, Y, Z), where q(X) is called the head, conj(X, Y, Z) is
called the body, X are called the distinguished variables, Y are existentially quantified
variables called the non-distinguished variables, Z are individual names or data liter-
als, and conj(X, Y, Z) is a conjunction of atoms of the form C(v), r(v1, v2), s(v, t),
or E(t1, . . . , tn), where C, r, s, E are respectively classes, object properties, datatype
properties and datatype built-ins, v, v1 and v2 are individual variables in X and Y or
individual names in Z, and t, t1, . . . , tn are data variables in X and Y or data literals
in Z. As usual, an interpretation I satisfies an ontologyO if it satisfies all the axioms in
O; in this case, we say I is a model ofO. Given an evaluation [X 7→ S], if every model
I of O satisfies q[X 7→S], we say O entails q[X 7→S]; in this case, S is called a solution
of q. A solution sequence S = (S1, . . . , Sn) is a list of solutions. A disjunctive query
(DQ) is a set of conjunctive queries sharing the same head.

SPARQL SPARQL [17] is a query language (W3C candidate recommendation) for
getting information from such RDF graphs. It introduces a notion of E-entailment
regime, which is a binary relation between subsets of RDF graphs. The default SPARQL
setting is simple entailment [18]; examples of other E-entailment regime are RDF en-
tailment [18], RDFS entailment [18] and OWL entailment [18].

Querying the Semantic Web with Preferences 7

SPARQL provides solution modifiers which allow to transform the solution list de-
rived from a CQ in several ways. The following solution modifiers are available: Dis-
tinct, Order, Limit and Offset. Here is the SPARQL syntax for the last three solution
modifiers.

SolutionModifier::= OrderClause? LimitClause? OffsetClause?
OrderClause ::= ’ORDER’ ’BY’ OrderCondition+
OrderCondition ::= ((’ASC’ | ’DESC’) ’(’ Expression ’)’) |

(FunctionCall | Var | ’(’ Expression ’)’)
LimitClause ::= ’LIMIT’ INTEGER
OffsetClause ::= ’OFFSET’ INTEGER

Distinct The Distinct solution sequence modifier D (used in the SELECT clause) en-
sures solutions in the sequence are unique; i.e., D(S) = S′ = (S′1, . . . , S

′
k) so that

{S′1, . . . , S′k} ⊆ {S1, . . . , Sn} and S′i 6= S′j for all 1 ≤ i < j ≤ k.

OrderClause The Order solution sequence modifier O applies ordering conditions to
a solution sequence, and thus provides a limited form of preference expressions. An
ordering condition can be a variable or a function call, and it can be explicitly set to
ascending or descending by enclosing the condition in ASC() or DESC() respectively.4

In general, an expression is a disjunctive normal form of numeric expression (see [17]
for details) but typically is a variable. Given an order condition C, we have O(S,C) =
S′ = (S′1, . . . , S

′
n) so that {S′1, . . . , S′n} = {S1, . . . , Sn} and S′i �C S′j or S′i ∼C S′j

for all 1 ≤ i < j ≤ n. We say that S′i dominates S′j w.r.t. C if S′i �C S′j holds.
The semantics of multiple order conditions (ORDER BY C1, C2, ...) are treated as
prioritised composition (cf. 4.2):

S′i �C1,C2 S′j ≡ S′i �C1 S′j ∨ (S′i ∼C1 S′j ∧ S′i �C2 S′j)

i.e., ordering according to C2 unless C1 is applicable. To sum up, with the Ordering-
Clause SPARQL supports only unidimensional (prioritized) composition of ordering
expressions.

LimitClause The Limit solution sequence modifier L puts an upper bound m on the
number of solutions returned; i.e., L(S,m) = S′ = (S1, . . . , Sk) where k = m if
n ≥ m and k = n otherwise.

OffsetClause The Offset solution sequence modifier OS causes the solutions generated
to start after the specified number of solutions; i.e., OS(S,m) = S′ = (Sm, . . . , Sn),
where m ≤ n, and OS(S,m) = S′ = (), otherwise. The combination of the Order,
Limit and Offset solution sequence modifiers can result in returning partial results.

Example Now let us take a look at what we can achieve with respect to the example
from Section 2 using the current solution modifiers. As we cannot specify independent
preferences, we have to decide for either rating preference or time preference. Here, we
show the query for the latter:

4 The default is ascending.

8 Wolf Siberski, Jeff Z. Pan, and Uwe Thaden

PREFIX pt: <http://physical-therapists.org/schema>

SELECT ?t ?app ?start ?end ?rating

WHERE ?t pt:offers-appointment ?app .

?t pt:rating ?rating .

?app pt:starts ?start .

?app pt:ends ?end .

?t pt:has-rating ?rating

FILTER (?rating = pt:very-good || ?rating = pt:excellent) .

ORDER BY DESC(?end <= ’16’ || ?start >= ’18’) DESC(?start)

As we can see, expression of prioritized preferences is possible using several order
conditions. In contrast to the discussion in Section 2, the shown query will also return
dominated appointments, but only at the bottom of the solution list.

4 Preference-based Querying for SPARQL

In this section, we will introduce our formal extension of SPARQL solution modifiers
to support the kind of preference that we need in ontology querying answering. For
illustrative purposes we start with an informal description of our sample preference
query according to the proposed extension:

1 SELECT ?t, ?app
2 WHERE {?t pt:offers-appointment ?app .
3 ?t pt:has-rating ?rating .
4 ?app pt:starts ?start .
5 ?app pt:ends ?end .
6 FILTER (?rating = pt:very-good || ?rating = pt:excellent)}
7 PREFERRING
8 ?rating = pt:excellent
9 AND

10 (?end <= ’16:00’ || ?start >= 18:00)
11 CASCADE HIGHEST(?start)
Line 1–6 of the query contains the solution pattern and hard constraints, defined

as usual. The PREFERRING keyword on line 7 starts the preference definition. Line
8 specifies that results where ?rating = pt:excellent is true are preferred over the ones
where this is not the case. The ‘AND’ keyword (line 9) is used to separate indepen-
dent preference dimensions. The avoid rush hour preference is expressed in line 10,
and line 11 contains the the late appointment preference. The ‘CASCADE’ keyword
expresses that the left-hand preference (avoid rush hour) takes priority over the right
hand preference (late appointment).

4.1 The Preferring Solution Sequence Modifier

Now we extend SPARQL with a new Preferring solution sequence modifier, in order
to facilitate the representation of preference motivated by the examples presented in
Section 2. Our extension covers the following two features:

Querying the Semantic Web with Preferences 9

1. Skyline queries: find all the solutions that are not dominated by any other solutions.
2. Soft constraints: Preferably return only the solutions that satisfy all the (hard and

soft) constraints; otherwise, relax some or all soft constraints and return only the
best answers.

In our extension, preference is a first-class construct in the query language. The
extended SPARQL syntax is listed below.

SolutionModifier ::= PreferringClause? OrderClause? LimitClause?
OffsetClause?

PreferringClause ::= ’PREFERRING’ MultidimensionalPreference
MultidimensionalPreference ::= CascadedPreference

(’AND’ CascadedPreference)*
CascadedPreference ::= AtomicPreference

(’CASCADE’ AtomicPreference)*
AtomicPreference ::= BooleanPreference

| HighestPreference | LowestPreference
BooleanPreference::= Expression
HighestPreference::= ’HIGHEST’ Expression
LowestPreference ::= ’LOWEST’ Expression

Intuitively, users can specify preferences that do not overwrite each other, by us-
ing the Preferring clauses with the definitions independent preference separated by the
‘AND’ construct. In each of these dimensions, atomic preferences can be nested using
the ‘CASCADE’ construct. Here, the leftmost part of the preference expression is eval-
uated first, and only if two solutions are equal with respect to this part, the next atomic
preference expression is evaluated.

4.2 Semantics of the Preferring Modifier

Formally, we define the semantics of atomic and combined preference relations, as fol-
lows:

Boolean preferences Boolean preferences are specified by a boolean expression BE.
For any solutions Si and Sj , the domination relation for such a preference, �CBE

is
defined as

Si �CBE
Sj ≡ BE(Si) ∧ ¬BE(Sj).

Scoring preferences They are specified by an expression which evaluates to a number
or a value in other SPARQL domains that have total ordering. For such an ordering <
and any solutions Si and Sj , the domination relation �CLOWEST,<

is defined as

Si �CLOWEST,<
Sj ≡ Si < Sj ,

and �CHIGHEST,<
is defined as

Si �CHIGHEST,<
Sj ≡ Sj < Si.

10 Wolf Siberski, Jeff Z. Pan, and Uwe Thaden

Multidimensional Preferences For any solutions Si and Sj , the domination relation to
combine independent preferences �[C1 AND C2]

is defined as

Si �[C1 AND C2]
Sj ≡ Si �C1 Sj ∧ Si �C2 Sj ∧ (Si �C1 Sj ∨ Si �C2 Sj).

Intuitively, this says that Si is dominated by Sj in neither C1 nor C2, and that Si domi-
nates Sj in either C1 or C2.

CascadedPreference For any solutions Si and Sj , the domination relation to combine
prioritized preferences �[C1 CASCADE C2]

is defined as
Si �[C1 CASCADE C2]

Sj ≡ Si �C1 Sj ∨ (Si ∼C1 Sj ∧ Si �C2 Sj).
With these definitions, we can now define the preferring solution modifier PS: Given a
domination relation C, PS(S,C) = S′ = (S′1, . . . , S

′
n) so that, for any S′i ∈ S′, there

exists no Sj ∈ S such that Sj �C S′i. Thus, the solution modifier PS gives us exactly
the non-dominated solutions in S.

Depending on the given preferences and solutions, PS may deliver just one (the best)
solution. We iteratively define the next best solutions as follows:

PS1(S,C) = PS(S,C)
PSn+1(S,C) = concat (PSn(S,C), PS(S \ PSn(S,C),C))

When combined with the LIMIT k solution modifier, n is selected such that
|PSn(S,C)| > k .

5 Implementation

As a proof of concept, the SPARQL implementation ARQ [19] has been extended.
ARQ is based on a query operator approach, where an operator class is implemented for
each solution modifier. This architecture allows to plug in additional solution modifiers
easily. Query processing in ARQ is a three-stage process (see ’Query Engine’ in Fig. 3):

First, the query is parsed and converted into an internal representation. To enable
preference handling for this step, productions according to the syntax specified in the
previous section have been added to the parser. Preference expression classes which are
responsible for evaluating the different preference constructs have been implemented.
The extended parser instantiates objects from these classes and assembles them to a
preference relation representation (see right-hand side of Fig. 3).

Second, ARQ creates a query plan for each incoming query, consisting of accord-
ingly chained operators. Such an operator for preference handling, has been added
which which contains the algorithm for determining dominating objects, based on the
given preference relation representation. The structure of an example query plan is
shown in the middle of Fig. 3. The planning algorithm has been extended to insert
the preference operator into the plan if a preference clause is present.

Finally, the query is executed on the given knowledge base. During this execution,
the preference operator filters all dominated solutions. In our prototype, we use the
BNL (Blocked Nested Loop) algorithm [5] for this purpose. The computation of the
preference relation is delegated to its representation which was generated during query
planning.

Querying the Semantic Web with Preferences 11

Knowledge Base

Basic
Pattern
Matcher

Projection
Operator

Filter
Operator

Preference
Operator

Limit
Operator

Query Engine

Query Plan

Preference Relation

Cascaded
Preference

Boolean
Preference

Boolean
Preference

Scoring
Preference

Multidimensional
Preference

Parser
Query

Planner
Query

Execution

Web Interface

Query

Knowledge
Base

Fig. 3. ARQ Query Engine with Sample Query Plan and Preference Expression

The ARQ query engine interface can be used by applications as before, and we
have implemented a Web interface to test applications of our extension which calls the
modified query engine to evaluate preference queries.5

6 Related Work

Most of the approaches that deal with ranking in the Semantic Web offer very specific
(hard-coded) ways to specify some of the properties and scoring functions, which are
not editable by the users.

Bibster [3] is a system for storing and sharing information about publications. It
allows to search for publications by topic and uses a very specific and unmodifiable
preference function, which makes it impossible to define scores and constraints on ar-
bitrary properties.

More domain dependent is the Textpresso-system [1], a system that allows for
ontology-based search for biological literature. Textpresso focuses on optimized
ontology-creation for this domain. Querying can be done combining fulltext and con-
cept search, i.e., using known associations or the combination of concepts. Explicit
rankings are not definable.

Aleman-Meza et al. [20] present a ranking approach which is based on measuring
complex relationships. Two entities are related (semantically associated) if there is at
least one binding property. They present several ways to rank the complex relation-
ships, but also do not propose a query language extension. A more general approach is
the Corese Search Engine [2], a search engine based on conceptual graphs. It is based

5 available at http://prefs.l3s.uni-hannover.de

12 Wolf Siberski, Jeff Z. Pan, and Uwe Thaden

on RDF, and its expressivity is comparable to RQL or SqishQL. The extension for ap-
proximate search is not done by extending one of the existing query languages but is
designed as a completely new language.

A more flexible solution is proposed in [21]. Here, the way in which a result of
a query is derived is used to rank the results of that query (based on how the results
”relate”). The relevance is defined on the level of the relation instances, while the re-
sults are a set of concept instances. The scoring functions used are in IR-style, but not
definable by the user.

The only approach known to the authors that also extends a query language is Impre-
cise RDQL [22]. This approach introduces the concept of similarity to enable ranking
on arbitrary properties. Their idea of similarity joins is based on the work of [23]. The
specification of soft constraints is still rather limited: IMPRECISE defines the variable
that shouldn’t be matched exactly. The measure to be used for an imprecise variable
is specified by the SIMMEASURE clause, but the measures which can be used are
constrained to a set of predefined metrics which the authors defined in a library. Fur-
thermore, like the previous approaches Imprecise RDQL offers only scoring for one
dimension.

Often, users won’t express their preferences directly, but the application might in-
fer preferences from a user profile or other context information, and amend an explicit
query accordingly (e.g. [24]). Various techniques for preference mining and elicitation
have already been developed, e.g. [25, 26], which can be used in Semantic Web appli-
cations as well.

7 Conclusion

In this paper we showed that ranking and preferences as established concepts in re-
lational databases also play an important role in querying the Semantic Web. We dis-
cussed why preferences are needed and how this concept can be transferred to Semantic
Web query languages such as SPARQL. The presented formal model can be used as uni-
fying framework for of a wide variety of ranking specifications. Finally, we described
our ARQ implementation of the SPARQL extension. Thus, the solution presented here
provides the basis for combining the strengths of logic-based precise querying and ben-
efits of ranking-based retrieval.

References

1. Müller, H., Kenny, E., Sternberg, P.: Textpresso: An ontology-based information retrieval
and extraction system for biological literature. PLoS Biol 2 (2004)

2. Corby, O., Dieng-Kuntz, R., Faron-Zucker, C.: Querying the semantic web with corese
search engine. In: Proceedings of the 16th Eureopean Conference on Artificial Intelligence
(ECAI). (2004) 705–709

3. Haase, P., Broekstra, J., Ehrig, M., Menken, M., Mika, P., Olko, M., Plechawski, M., Pys-
zlak, P., Schnizler, B., Siebes, R., Staab, S., Tempich, C.: Bibster – a semantics-based biblio-
graphic peer-to-peer system. In: Proceedings of 3rd International Semantic Web Conference
(ISWC). (2004) 122 – 136

Querying the Semantic Web with Preferences 13

4. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. In: Pro-
ceedings of the Twentieth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS), Santa Barbara, California, USA (2001)

5. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of the
17th International Conference on Data Engineering (ICDE), Heidelberg, Germany (2001)
421–430

6. Kießling, W.: Foundations of preferences in database systems. In: Proceedings of the 28th
International Conference on Very Large Data Bases (VLDB), Hong Kong, China (2002)
311–322

7. Chomicki, J.: Preference formulas in relational queries. ACM Trans. Database Syst. 28
(2003) 427–466

8. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American (2001)
9. Fishburn, P.C.: Utility Theory for Decision Making. Wiley, New York (1970)

10. Riecken, D.: Introduction: personalized views of personalization. Commun. ACM 43 (2000)
26–28 (Introduction to Special Issue on Personalization).

11. Lacroix, M., Lavency, P.: Preferences; putting more knowledge into queries. In: Proceedings
of 13th International Conference on Very Large Data Bases (VLDB), Brighton, UK (1987)
217–225

12. Agrawal, R., Wimmers, E.L.: A framework for expressing and combining preferences. In:
Proceedings of the ACM SIGMOD International Conference on Management of Data (SIG-
MOD), Dallas, TX, USA (2000) 297–306

13. Li, C., Soliman, M.A., Chang, K.C.C., Ilyas, I.F.: Ranksql: Supporting ranking queries in re-
lational database management systems. In: Proceedings of the 31st International Conference
on Very Large Data Bases (VLDB), Trondheim, Norway (2005) 1342–1345

14. Uschold, M., Gruninger, M.: Ontologies: Principles, Methods and Applications. The Knowl-
edge Engineering Review (1996)

15. Brickley, D., Guha, R.: RDF Vocabulary Description Language 1.0: RDF Schema (2004)
W3C recommendation, http://www.w3.org/TR/rdf-schema/.

16. Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL Web Ontology Language Semantics and
Abstract Syntax (2004) W3C Recommendation, http://www.w3.org/TR/owl-semantics/.

17. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF (2006) W3C Candi-
date Recommendation, http://www.w3.org/TR/rdf-sparql-query/.

18. Hayes, P.: RDF Semantics (2004) W3C recommendation, http://www.w3.org/TR/rdf-mt/.
19. Seaborne, A.: An open source implementation of SPARQL (2006) WWW2006 Developers

track presentation, http://www2006.org/programme/item.php?id=d18.
20. Aleman-Meza, B., Halaschek-Wiener, C., Arpinar, I.B., Ramakrishnan, C., Sheth, A.P.:

Ranking complex relationships on the semantic web. IEEE Internet Computing 9 (2005)
37–44

21. Stojanovic, N.: An approach for defining relevance in the ontology-based information re-
trieval. In: Proceedings of the International Conference on Web Intelligence (WI), Com-
piegne, France (2005) 359–365

22. Bernstein, A., Kiefer, C.: Imprecise RDQL: Towards Generic Retrieval in Ontologies Using
Similarity Joins. In: 21th Annual ACM Symposium on Applied Computing (SAC), New
York, NY, USA, ACM Press (2006)

23. Cohen, W.W.: Data integration using similarity joins and a word-based information repre-
sentation language. ACM Trans. Inf. Syst. 18 (2000) 288–321

24. Dolog, P., Henze, N., Nejdl, W., Sintek, M.: The personal reader: Personalizing and en-
riching learning resources using semantic web technologies. In: Proceedings of the Third
International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems (AH),
Eindhoven, Netherlands (2004) 85–94

14 Wolf Siberski, Jeff Z. Pan, and Uwe Thaden

25. Sai, Y., Yao, Y., Zhong, N.: Data analysis and mining in ordered information tables. In:
Proceedings of the International Conference on Data Mining (ICDM), San Jose, CA, USA
(2001) 497–504

26. Blum, A., Jackson, J.C., Sandholm, T., Zinkevich, M.: Preference elicitation and query
learning. Journal of Machine Learning Research 5 (2004) 649–667

