
Extending faceted navigation for RDF data

Eyal Oren, Renaud Delbru, and Stefan Decker

DERI Galway, Ireland
firstname.lastname@deri.org

Abstract. Data on the Semantic Web is semi-structured and does not
follow one fixed schema. Faceted browsing [23] is a natural technique
for navigating such data, partitioning the information space into or-
thogonal conceptual dimensions. Current faceted interfaces are manu-
ally constructed and have limited query expressiveness. We develop an
expressive faceted interface for semi-structured data and formally show
the improvement over existing interfaces. Secondly, we develop metrics
for automatic ranking of facet quality, bypassing the need for manual
construction of the interface. We develop a prototype for faceted navi-
gation of arbitrary RDF data. Experimental evaluation shows improved
usability over current interfaces.

1 Introduction

As Semantic Web data emerges, techniques for browsing and navigating this data
are necessary. Semantic Web data, expressed in RDF1, is typically very large,
highly interconnected, and heterogeneous without following one fixed schema [1].
Any technique for navigating such datasets should therefore be scalable; should
support graph-based navigation; and should be generic, not depend on a fixed
schema, and allow exploration of the dataset without a-priori knowledge of its
structure.

We identified four existing interface types for navigating RDF data: (1) key-
word search, e.g. Swoogle2, (2) explicit queries, e.g. Sesame3, (3) graph visualisa-
tion, e.g. IsaViz4 , and (4) faceted browsing [12, 19, 23]. None of these fulfill the
above requirements: keyword search suffices for simple information lookup, but
not for higher search activities such as learning and investigating [13]; writing
explicit queries is difficult and requires schema knowledge; graph visualisation
does not scale to large datasets [7]; and existing faceted interfaces are manu-
ally constructed and domain-dependent, and do not fully support graph-based
navigation.

In this paper we 1. improve faceted browsing techniques for RDF data, 2. de-
velop a technique for automatic facet ranking, 3. develop a formal model of
faceted browsing, allowing for precise comparison of interfaces, and 4. support
our conclusions with a formal analysis and an experimental evaluation.
1 http://www.w3.org/RDF/
2 http://swoogle.umbc.edu/
3 http://www.openrdf.org/
4 http://www.w3.org/2001/11/IsaViz/

2 Faceted browsing

An exploratory interface allows users to find information without a-priori knowl-
edge of its schema. Especially when the structure or schema of the data is un-
known, an exploration technique is necessary [21]. Faceted browsing [23] is an
exploration technique for structured datasets based on the facet theory [17].

In faceted browsing the information space is partitioned using orthogonal con-
ceptual dimensions of the data. These dimensions are called facets and represent
important characteristics of the information elements. Each facet has multiple
restriction values and the user selects a restriction value to constrain relevant
items in the information space. The facet theory can be directly mapped to nav-
igation in semi-structured RDF data: information elements are RDF subjects,
facets are RDF predicates and restriction-values are RDF objects.

A collection of art works can for example have facets such as type of work,
time periods, artist names and geographical locations. Users are able to constrain
each facet to a restriction value, such as “created in the 20th century”, to limit
the visible collection to a subset. Step by step other restrictions can be applied
to further constrain the information space.

A faceted interface has several advantages over keyword search or explicit
queries: it allows exploration of an unknown dataset since the system suggests
restriction values at each step; it is a visual interface, removing the need to write
explicit queries; and it prevents dead-end queries, by only offering restriction
values that do not lead to empty results.

3 A faceted interface for RDF data

In this section we introduce our faceted interface for arbitrary RDF data, ex-
plain its functionality, and formally describe its expressive power. The formal
treatment allows us to clearly show the improvement in expressive power over
existing interfaces, which we will do in Sec. 5.1.

3.1 Overview

A screenshot of our BrowseRDF prototype5, automatically generated for arbi-
trary data, is shown in Fig. 1. This particular screenshot shows the FBI’s most
wanted fugitives6. These people are described by various properties, such as their
weight, their eye-color, and the crime that they are wanted for. These proper-
ties form the facets of the dataset, and are shown on the left-hand side of the
screenshot.

Users can browse the dataset by constraining one or several of these facets.
At the top-center of the screenshot we see that the user constrained the dataset
to all fugitives that weigh 150 pounds, and in the middle of the interface we see

5 available at http://browserdf.org.
6 http://sp11.stanford.edu/kbs/fbi.zip

Fig. 1: Faceted browsing prototype

that three people have been found conforming to that constraint. These people
are shown (we see only the first), with all information known about them (their
alias, their nationality, their eye-color, and so forth). The user could now apply
additional constraints, by selecting another facet (such as citizenship) to see only
the fugitives that weigh 150 pounds and speak French.

3.2 Functionality

The goal of faceted browsing is to restrict the search space to a set of relevant
resources (in the above example, a set of fugitives). Faceted browsing is a visual
query paradigm [15, 9]: the user constructs a selection query by browsing and
adding constraints; each step in the interface constitutes a step in the query
construction, and the user sees intermediate results and possible future steps
while constructing the query.

We now describe the functionality of our interface more systematically, by
describing the various operators that users can use. Each operator results in
a constraint on the dataset; operators can be combined to further restrict the
results to the set of interest. Each operator returns a subset of the information
space; an exact definition is given in Sec. 3.3.

Basic selection The basic selection is the most simple operator. It selects nodes
that have a direct restriction value. The basic selection allows for example to

“find all resources of thirty-year-olds”, as shown in Fig. 2a. It selects all nodes
that have an outgoing edge, labelled “age”, that leads to the node “30”. In the
interface, the user first selects a facet (on the left-hand side) and then chooses a
constraining restriction value.

?x 30age

(a) Basic selection

?x ...spousex
(b) Existential selection

?x ...knows stefan... knows first
name

(c) Join selection

Fig. 2: Selection operators

Existential selection There might be cases when one is interested in the exis-
tence of a property, but not in its exact value, or one may be interested simply
in the non-existence of some property. For example, we can ask for “all resources
without a spouse” (all unmarried people), as shown in Fig. 2b. In the interface,
instead of selecting a restriction value for the facet, the user clicks on “any” or
“none” (on the left-hand side, after the facet name).

Join selection Given that RDF data forms a graph, we often want to select
some resources based on the properties of the nodes that they are connected to.
For example, we are looking for “all resources who know somebody, who in turn
knows somebody named Stefan”, as shown in Fig. 2c. Using the join-operator
recursively, we can create a path of arbitrary length7, where joins can occur on
arbitrary predicates. In the interface, the user first selects a facet (on the left-
hand side), and then in turn restricts the facet of that resource. In the given
example, the user would first click on “knows”, click again on “knows” and then
click on “first-name”, and only then select the value “Stefan”.

Intersection When we define two or more selections, these are evaluated in
conjunction. For example, we can use the three previous examples to restrict the
resources to “all unmarried thirty-years old who know some other resource that
knows a resource named Stefan Decker”, as shown in Fig. 3. In the interface, all
constraints are automatically intersected.

Inverse selection All operators have an inverse version that selects resources
by their inverse properties. For example, imagine a dataset that specifies com-
panies and their employees (through the “employs” predicate). When we select
7 The path can have arbitrary length, but the length must be specified; we, or any

RDF store [1], do not support regular expression queries, as in e.g. GraphLog [3].

30

nonespouse?x

...

knows

stefan... knows first
name

age

Fig. 3: Intersection operator

a person, we might be interested in his employer, but this data is not directly
available. Instead, we have to follow the inverse property: we have to look for
those companies who employ this person. In the user interface, after all regular
facets, the user sees all inverse facets. The inverse versions of the operators are:

Inverse basic selection For example, when the graph only contains state-
ments such as “DERI employs ?x”, we can ask for “all resources employed
by DERI”, as shown in Fig. 4a.

Inverse existential selection We could also find all employed people, regard-
less of their employer, as shown in Fig. 4b.

Inverse join selection The inverse join selection allows us to find “all re-
sources employed by a resource located in Ireland”, as shown in Fig. 4c.

?x DERIemploys

(a) Inverse basic selection

?x ...employs

(b) Inverse existential selection

?x ...employs Irelandlocated-in

(c) Inverse join selection

Fig. 4: Inverse operators

We can merge the last example with the intersection example to find “all
unmarried thirty-year-olds who know somebody –working in Ireland– who knows
Stefan”, as shown in Fig. 5.

3.3 Expressiveness

In this section we formalise our operators as functions on an RDF graph. The
formalisation precisely defines the possibilities of our faceted interface, and allows
us to compare our approach to existing approaches (which we will do in Sect. 5.1).

30

nonespouse?x

...

knows

stefan... knows first
name

age

...

employs

Irelandlocated-in

Fig. 5: Full selection

First, we define the graph on which the operations are applied. Our notion
of an RDF graph differs from the standard one8: we only consider the explicit
statements in an RDF document and do not infer additional information as
mandated by the RDF semantics. The latter is not a “violation” of the semantics,
because we assume the RDF store to perform the necessary inferences already;
we regard a given RDF graph simply as the graph itself.

Definition 1 (RDF Graph). An RDF graph G is defined as G = (V,E, L, l)
where V is the set of vertices (subjects and objects), E is the set of edges
(predicates), L is the set of labels, l : E → label is the labelling function for
predicates and with V and E disjoint9. The projections, source : E → V and
target : E → V , return the source and target nodes of edges.

Table 1 gives a formal definition for each of the earlier operators. The opera-
tors describe faceted browsing in terms of set manipulations: each operator is a
function, taking some constraint as input and returning a subset of the resources
that conform to that constraint. The definition is not intended as a new query
language, but to demonstrate the relation between the interface actions in the
faceted browser and the selection queries on the RDF graph. In our prototype,
each user interface action is translated into the corresponding sparql10 query
and executed on the RDF store.

The primitive operators are the basic and existential selection, and their in-
verse forms. The basic selection returns resources with a certain property value.
The existential selection returns resources that have a certain property, irre-
spective of its value. These primitives can be combined using the join and the
intersection operator. The join returns resources with a property, whose value is
part of the joint set. The intersection combines constraints conjunctively. The
8 http://www.w3.org/TR/rdf-mt/
9 In RDF E and V are not necessarily disjoint but we restrict ourselves to graphs in

which they actually are.
10 http://www.w3.org/TR/rdf-sparql-query/

join and intersection operators have closure: they have sets as input and out-
put and can thus be recursively composed. As an example, all thirty-year-olds
without a spouse would be selected by: intersect(select(age, 30), not(spouse)).

operator definition

basic selection select(l, v′) = {v ∈ V | ∀e ∈ E : label(e) = l, source(e) = v
target(e) = v′}

inv. basic selection select−(l, v′) = {v ∈ V | ∀e ∈ E : label(e) = l, source(e) = v′

target(e) = v}
existential exists(l) = {v ∈ V | ∀e ∈ E : label(e) = l, source(e) = v}
inv. existential exists−(l) = {v ∈ V | ∀e ∈ E : label(e) = l, target(e) = v}
not-existential not(l) = V − exists(l)
inv. not-existential not−(l) = V − exists−(l)
join join(l, V ′) = {v ∈ V | ∀e ∈ E : label(e) = l, source(e) = v

target(e) ∈ V ′}
inv. join join−(l, V ′) = {v ∈ V | ∀e ∈ E : label(e) = l, source(e) ∈ V ′

target(e) = v}
intersection intersect(V ′, V ′′) = V ′ ∩ V ′′

Table 1: Operator definitions

4 Automatic facet ranking

By applying the previous definitions a faceted browser for arbitrary data can
be built. But if the dataset is very large, the number of facets will typically
also be large (especially with heterogeneous data) and users will not be able to
navigate through the data efficiently. Therefore, we need an automated technique
to determine which facets are more useful and more important than others. In
this section, we develop such a technique.

To automatically construct facets, we need to understand what characteris-
tics constitute a suitable facet. A facet should only represent one important
characteristic of the classified entity [17], which in our context is given by its
predicates. We need to find therefore, among all predicates, those that best rep-
resent the dataset (the best descriptors), and those that most efficiently navigate
the dataset (the best navigators).

In this section, we introduce facet ranking metrics. We first analyse what
constitutes suitable descriptors and suitable navigators, and then derive metrics
to compute the suitability of a facet in an dataset. We demonstrate these metrics
on a sample dataset.

4.1 Descriptors

What are suitable descriptors of a data set? For example, for most people the
“page number” of articles is not very useful: we do not remember papers by
their page-number. According to Ranganathan [17], intuitive facets describe a
property that is either temporal (e.g. year-of-publication, date-of-birth), spatial

(conference-location, place-of-birth), personal (author, friend), material (topic,
color) or energetic (activity, action).

Ranganathan’s theory could help us to automatically determine intuitive facets:
we could say that facets belonging to either of these categories are likely to be
intuitive for most people, while facets that do not are likely to be unintuitive.
However, we usually lack background knowledge about the kind of facet we are
dealing with since this metadata is usually not specified in datasets. Ontologies,
containing such background knowledge, might be used, but that is outside the
scope of this paper.

decker ...

author

... 2000

year

peer-
to-peer

semantic
web

topic

triple

(a)

2000 ...

year

algorithms databaselogics

topic

decker ...

author

(b)

Fig. 6: Faceted browsing as decision tree traversal

4.2 Navigators

A suitable facet allows efficient navigation through the dataset. Faceted brows-
ing can be considered as simultaneously constructing and traversing a decision
tree whose branches represent predicates and whose nodes represent restriction
values. For example, Fig. 6a shows a tree for browsing a collection of publica-
tions by first constraining the author, then the year and finally the topic. Since
the facets are orthogonal they can be applied in any order: one can also first
constrain the year and topic of publication, and only then select some author,
as shown in Fig. 6b.

A path in the tree represents a set of constraints that select the resources of
interest. The tree is constructed dynamically, e.g. the available restriction values
for “topic” are different in both trees: Fig. 6b shows all topics from publications
in 2000, but Fig. 6a shows only Stefan Decker’s topics.

4.3 Facet metrics

Regarding faceted browsing as constructing and traversing a decision tree helps
to select and use those facets that allow the most efficient navigation in the tree.

In this section we define this “navigation quality” of a facet in terms of three
measurable properties (metrics) of the dataset. All metrics range from [0..1]; we
combine them into a final score through (weighted) multiplication. We scale the
font-size of facets by their rank, allowing highlighting without disturbing the
alphabetical order11.

The metrics need to be recomputed at each step of the decision tree, since the
information space changes (shrinks) at each decision step. We give examples for
each metric, using a sample12 of the Citeseer13 dataset for scientific publications
and citations, but these example metrics only apply on the top-level (at the root
of the decision-tree).

We would like to rank facets not only on their navigational value, but also on
their descriptive value, but we have not yet found a way to do so. As a result,
the metrics are only an indication of usefulness; badly ranked facets should not
disappear completely, since even when inefficient they could still be intuitive.

Predicate balance Tree navigation is most efficient when the tree is well-
balanced because each branching decision optimises the decision power [20,
p. 543]. We therefore use the balance of a predicate to indicate its navigation
efficiency.

For example, we see in Table 2a that institution and label are well balanced,
but publication type is not, with a normalised balance of 0.3. Table 2b shows in
more detail why the type of publications is unbalanced: among the 13 different
types of publications, only three occur frequently (proceeding papers, miscella-
neous and journal articles); the rest of the publication types occur only rarely.
Being a relatively unbalanced predicate, constraining the publication type would
not be the most economic decision.

We compute the predicate balance balance(p) from the distribution ns(oi) of
the subjects over the objects as the average inverted deviation from the vector
mean µ. The balance is normalised to [0..1] using the deviation in the worst-case
distribution (where Ns is the total number of subjects and n is the number of
different objects values for predicate p):

balance(p) = 1−
∑n

i=1 | ns(oi)− µ |
(n− 1)µ + (Ns − µ)

Object cardinality A suitable predicate has a limited (but higher than one)
amount of object values to choose from. Otherwise, when there are too many
choices, the options are difficult to display and the choice might confuse the user.

For example, as shown in Table 2c, the predicate type is very usable since
it has only 13 object values to choose from, but the predicate author or title
would not be directly usable, since they have around 4000 different values. One

11 font scaling has not yet been implemented.
12 http://www.csd.abdn.ac.uk/∼ggrimnes/swdataset.php
13 http://citeseer.ist.psu.edu/

solution for reducing the object cardinality is object clustering [11, 22], but that
is outside the scope of this paper.

We compute the object cardinality metric card(p) as the number of different
objects (restriction values) no(p) for the predicate p and normalise it using the a
function based on the Gaussian density. For displaying and usability purposes the
number of different options should be approximately between two and twenty,
which can be regulated through the µ and σ parameters.

card(p) =

{
0 if no(p) ≤ 1

exp−
(no(p)−µ)2

2σ2 otherwise

Predicate frequency A suitable predicate occurs frequently inside the collec-
tion: the more distinct resources covered by the predicate, the more useful it is
in dividing the information space [4]. If a predicate occurs infrequently, select-
ing a restriction value for that predicate would only affect a small subset of the
resources.

For example, in Table 2d we see that all publications have a type, author,
title, and URL, but that most do not have a volume, number, or journal.

We compute the predicate frequency freq(p) as the number of subjects ns(p) =
|exists(p)| in the dataset for which the predicate p has been defined, and nor-
malise it as a fraction of the total number of resources ns: freq(p) = ns(p)

ns
.

predicate balance

institute 1.00
label 1.00
url 1.00
title 1.00
text 0.99
author 0.96
pages 0.92
editor 0.82
isbn 0.76
...

...
type 0.30

(a) balance

type perc.

inproc. 40.78%
misc 28.52%
article 19.44%
techrep. 7.59%
incoll. 2.66%
phd 0.47%
book 0.21%
unpub. 0.19%
msc 0.07%
inbook 0.05%
proc. 0.02%

(b) objects in type

predicate objects

title 4215
url 4211
author 4037
pages 2168
text 1069
booktitle 1010
number 349
address 341
journal 312
editor 284
...

...
type 13

(c) cardinality

predicate freq.

type 100%
author 99%
title 99%
url 99%
year 91%
pages 55%
booktitle 37%
text 25%
number 23%
volume 22%
journal 20%
...

...

(d) frequency

Table 2: Sample metrics in Citeseer dataset

5 Evaluation

We first evaluate our approach formally, by comparing the expressiveness of
our interface to existing faceted browsers. We then report on an experimental
evaluation.

5.1 Formal evaluation

Several approaches exist for faceted navigation of (semi-)structured data, such
as Flamenco [23], mSpace [19], Ontogator [12], Aduna Spectacle14, Siderean Sea-
mark Navigator15 and Longwell16. Our formal model provides a way to compare
their functionality explicitly.

Existing approaches cannot navigate arbitrary datasets: the facets are manu-
ally constructed and work only on fixed data structures. Furthermore, they as-
sume data homogeneity, focus on a single type of resource, and represent other
resources with one fixed label. One can for example search for publications writ-
ten by an author with a certain name, but not by an author of a certain age,
since authors are always represented by their name.

Table 3 explicitly shows the difference in expressive power, indicating the
level of support for each operator. The existing faceted browsers support the ba-
sic selection and intersection operators; they also support joins but only with a
predefined and fixed join-path, and only on predefined join-predicates. The com-
mercial tools are more polished but have in essence the same functionality. Our
interface adds the existential operator, the more flexible join operator and the
inverse operators. Together these significantly improve the query expressiveness.

operator BrowseRDF Flamenco mSpace Ontogator Spectacle Seamark

selection + + + + + +
inv. selection + − − − − −
existential + − − − − −
inv. exist. + − − − − −
not-exist. + − − − − −
inv. not-exist. + − − − − −
join + ± ± ± ± ±
inv. join + − − − − −
intersection + + + + + +

Table 3: Expressiveness of faceted browsing interfaces

Other related work Some non-faceted, domain-independent, browsers for RDF
data exist, most notably Noadster [18] and Haystack [16]. Noadster (and its
predecessor Topia) focuses on resource presentation and clustering, as opposed
to navigation and search, and relies on manual specification of property weights,
whereas we automatically compute facet quality. Haystack does not offer faceted
browsing, but focuses on data visualisation and resource presentation.

Several approaches exist for generic visual exploration of RDF graphs [6, 5]
but none scale for large graphs: OntoViz17 cannot generate good layouts for
more than 10 nodes and IsaViz18 is ineffective for more than 100 nodes [7].
14 http://www.aduna-software.com/products/spectacle/
15 http://www.siderean.com/
16 http://simile.mit.edu/longwell
17 http://protege.stanford.edu/plugins/ontoviz/
18 http://www.w3.org/2001/11/IsaViz/

Related to our facet ranking approach, a technique for automatic classification
of new data under existing facets has been developed [4], but requires a prede-
fined training set of data and facets and only works for textual data; another
technique [2], based on lexical dispersion, does not require training but it is also
limited to textual data.

5.2 Experimental evaluation

We have performed an experimental evaluation to compare our interface to al-
ternative generic interfaces, namely keyword-search and manual queries.

Prototype The evaluation was performed on our prototype, shown earlier in
Fig. 1. The prototype is a web application, accessible with any browser. We use
the Ruby on Rails19 web application framework to construct the web interface.
The prototype uses ActiveRDF20 [14], an object-oriented API for arbitrary RDF
data, to abstract the RDF store and translate the interface operators into RDF
queries. The abstraction layer of ActiveRDF uses the appropriate query language
transparently depending on the RDF datastore. We used the YARS [10] RDF
store because its index structure allows it to answer our typical queries quickly.

Methodology Mimicking the setup of Yee et al. [23], we evaluated21 15 test sub-
jects, ranging in RDF expertise from beginner (8), good (3) to expert (4). None
were familiar with the dataset used in the evaluation.

We offered them three interfaces, keyword search (through literals), manual
(N3) query construction, and our faceted browser. All interfaces contained the
same FBI fugitives data mentioned earlier. To be able to write queries, the test
subjects also received the data-schema.

In each interface, they were asked to perform a set of small tasks, such as
“find the number of people with brown eyes”, or “find the people with Kenyan
nationality”. In each interface the tasks were similar (so that we could compare
in which interface the task would be solved fastest and most correctly) but not
exactly the same (to prevent reuse of earlier answers). The questions did not
involve the inverse operator as it was not yet implemented at the time. We
filmed all subjects and noted the time required for each answer; we set a two
minute time-limit per task.

Results Overall, our results confirm earlier results [23]: people overwhelmingly
(87%) prefer the faceted interface, finding it useful (93%) and easy-to-use (87%).

As shown in Table 4, on the keyword search, only 16% of the questions were
answered correctly, probably because the RDF datastore allows keyword search
only for literals. Using the N3 query language, again only 16% of the questions

19 http://rubyonrails.org
20 http://activerdf.org
21 evaluation details available on http://m3pe.org/browserdf/evaluation.

were answered correctly, probably due to unfamiliarity with N3 and the un-
forgiving nature of queries. In the faceted interface 74% of the questions were
answered correctly.

Where correct answers were given, the faceted interface was on average 30%
faster than the keyword search in performing similar tasks, and 356% faster than
the query interface. Please note that only 10 comparisons could be made due to
the low number of correct answers in the keyword and query interfaces.

Questions involving the existential operator took the longest to answer, in-
dicating difficulty understanding that operator, while questions involving the
basic selection proved easiest to answer — suggesting that arbitrarily adding
query expressiveness might have limited benefit, if users cannot use the added
functionality.

solved unsolved

keyword 15.55% 84.45%
query 15.55% 84.45%
faceted 74.29% 25.71%

(a) Task solution rate

keyword query faceted

easiest to use 13.33% 0% 86.66%
most flexible 13.33% 26.66% 60%
most dead-ends 53.33% 33.33% 13.33%
most helpful 6.66% 0% 93.33%
preference 6.66% 6.66% 86.66%

(b) Post-test preferences

Table 4: Evaluation results

6 Conclusion

Faceted browsing [23] is a data exploration technique for large datasets. We have
shown how this technique can be employed for arbitrary semi-structured content.
We have extended the expressiveness of existing faceted browsing techniques
and have developed metrics for automatic facet ranking, resulting in an auto-
matically constructed faceted interface for arbitrary semi-structured data. Our
faceted navigation has improved query expressiveness over existing approaches
and experimental evaluation shows better usability than current interfaces.

Future work Our additional expressiveness does not necessarily result in higher
usability; future research is needed to evaluate the practical benefits of our ap-
proach against existing work. Concerning the ranking metrics, we performed an
initial unpublished evaluation showing that although the search space is divided
optimally, the ranking does not always correspond to the intuitive importance
people assign to some facets; again, further research is needed.

Acknowledgements This material is based upon works supported by the Science
Foundation Ireland under Grants No. SFI/02/CE1/I131 and SFI/04/BR/CS0694.
We thank Jos de Bruijn and the anonymous reviewers for valuable comments on
a previous version.

References

[1] R. Angles and C. Gutierrez. Querying RDF data from a graph database perspec-
tive. In ESWC, pp. 346–360. 2005.

[2] P. Anick and S. Tipirneni. Interactive document retrieval using faceted termino-
logical feedback. In HICSS. 1999.

[3] M. P. Consens and A. O. Mendelzon. Graphlog: a visual formalism for real life
recursion. In PODS, pp. 404–416. 1990.

[4] W. Dakka, P. Ipeirotis, and K. Wood. Automatic construction of multifaceted
browsing interfaces. In CIKM. 2005.

[5] C. Fluit, M. Sabou, and F. van Harmelen. Ontology-based information visualiza-
tion. In [8], pp. 45–58.

[6] C. Fluit, M. Sabou, and F. van Harmelen. Supporting user tasks through visual-
isation of light-weight ontologies. In S. Staab and R. Studer, (eds.) Handbook on
Ontologies, pp. 415–434. Springer-Verlag, Berlin, 2004.

[7] F. Frasincar, A. Telea, and G.-J. Houben. Adapting graph visualization techniques
for the visualization of RDF data. In [8], pp. 154–171.

[8] V. Geroimenko and C. Chen, (eds.) Visualizing the Semantic Web. Springer-
Verlag, Berlin, second edn., 2006.

[9] N. Gibbins, S. Harris, A. Dix, and mc schraefel. Applying mspace interfaces to
the semantic web. Tech. Rep. 8639, ECS, Southampton, 2004.

[10] A. Harth and S. Decker. Optimized index structures for querying RDF from the
web. In LA-WEB. 2005.

[11] M. A. Hearst. Clustering versus faceted categories for information exploration.
Comm. of the ACM, 46(4), 2006.

[12] E. Hyvönen, S. Saarela, and K. Viljanen. Ontogator: Combining view- and
ontology-based search with semantic browsing. In Proc. of XML Finland. 2003.

[13] G. Marchionini. Exploratory search: From finding to understanding. Comm. of
the ACM, 49(4), 2006.

[14] E. Oren and R. Delbru. ActiveRDF: Object-oriented RDF in Ruby. In Scripting
for Semantic Web (ESWC). 2006.

[15] C. Plaisant, B. Shneiderman, K. Doan, and T. Bruns. Interface and data architec-
ture for query preview in networked information systems. ACM Trans. Inf. Syst.,
17(3):320–341, 1999.

[16] D. Quan and D. R. Karger. How to make a semantic web browser. In WWW.
2004.

[17] S. R. Ranganathan. Elements of library classification. Bombay: Asia Publishing
House, 1962.

[18] L. Rutledge, J. van Ossenbruggen, and L. Hardman. Making RDF presentable:
integrated global and local semantic Web browsing. In WWW. 2005.

[19] m. schraefel, M. Wilson, A. Russell, and D. A. Smith. mSpace: Improving informa-
tion access to multimedia domains with multimodal exploratory search. Comm.
of the ACM, 49(4), 2006.

[20] R. Sedgewick. Algorithms in C++. Addison-Wesley, 1998.
[21] R. W. White, B. Kules, S. M. Drucker, and mc schraefel. Supporting exploratory

search. Comm. of the ACM, 49(4), 2006.
[22] R. Xu and D. W. II. Survey of clustering algorithms. IEEE Trans. on Neural

Networks, 16(3):645–678, 2005.
[23] K.-P. Yee, K. Swearingen, K. Li, and M. Hearst. Faceted metadata for image

search and browsing. In CHI. 2003.

