On How to Perform a Gold Standard Based Evaluation
of Ontology Learning

Klaas Dellschaft and Steffen Staab

Universitit Koblenz-Landau, ISWeb Working Group
Universititsstr. 1, 56070 Koblenz, Germany
{klaasd, staab}@uni-koblenz.de,
WWW home page: http://isweb.uni-koblenz.de

Abstract. In recent years several measures for the gold standard based evalua-
tion of ontology learning were proposed. They can be distinguished by the layers
of an ontology (e.g. lexical term layer and concept hierarchy) they evaluate. Judg-
ing those measures with a list of criteria we show that there exist some measures
sufficient for evaluating the lexical term layer. However, existing measures for the
evaluation of concept hierarchies fail to meet basic criteria. This paper presents a
new taxonomic measure which overcomes the problems of current approaches.

1 Introduction

The capabilities of ontology learning approaches may be tested by (i) evaluation in a
running application, (ii) a posteriori evaluation by experts, or (iii) evaluation by compar-
ison of learned results against a pre-defined “gold standard”. Though approaches (i) and
(ii) exhibit some considerable advantages over approach (iii), when it comes to frequent
and large-scale evaluations and comparisons of multiple ontology learning approaches,
only approach (iii) is feasible in practice. Since such — comparably — easily repeatable
evaluation schemes contributed heavily to the overwhelming success of disciplines like
information retrieval, machine learning or speech recognition, we conjecture that a sim-
ilar success of ontology learning requires an analogous scheme for evaluation with gold
standards, too.

Examples of gold standard-based evaluations of ontology learning can be found
in [1], [2] and [3] — to name but a few. However, it is apparent that there does not
exist a canonical way of performing gold-standard based evaluations of ontology learn-
ing. Moreover, we argue in this paper that existing gold-standard based evaluations are
faulty and that a well-founded evaluation model is largely missing. Therefore, we de-
scribe here a new framework for gold standard-based evaluation of ontology learning
that avoids common mistakes and we show by some analytical considerations and by
some experiments that the new framework fulfills crucial evaluation criteria that other
frameworks do not meet.

2 Related Work

There exist many measures for the reference-based evaluation of ontologies. One may
distinguish between measures which only evaluate the lexical term layer of an ontology,



those which also take the concept hierarchy into account and the ones which evaluate
the non-taxonomic relations contained in an ontology. In this paper we will concentrate
on the measures for evaluating concept hierarchies and the lexical term layer.

On the lexical term layer “binary” measures are often used that compare the terms
from the reference and the learned ontology based on an exact match of strings. Ex-
amples for this kind of measure are the Term Precision and Term Recall as they are
presented in [3]. There exist also several other names for these measures like Lexical
Precision and Recall or simply precision and recall (see [4] and [5]). Another example
of a term level evaluation measure is the String Matching measure presented in [6] and
[7]. This measure is based on the edit distance between two strings. It is therefore more
robust with regard to slightly different spellings and typing errors (e.g. “’center” and
“centre”).

The comparison of concept hierarchies is more complicated than the comparison of
the lexical term layer of ontologies. Such concept hierarchy measures are often divided
into kinds of local and global measures. The local measure compares the similarity of
the positions of two concepts in the learned and the reference hierarchy. The global
measure is then computed by averaging the results of the local measure for concept
pairs from the reference and the learned ontology.

One of the first examples of a concept hierarchy evaluation measure is the Taxo-
nomic Overlap (TO) presented in [6] and [7]. The local taxonomic overlap compares
two concepts based on the set of all their super- and sub concepts. In opposite to the
local overlap, which is a symmetric measure, this is not the case for the global taxo-
nomic overlap measures proposed in [6], [7] and [8], i.e. they can be computed into two
directions. In [8] this asymmetry is interpreted as a kind of precision and recall. But
in section 4.5 we will show that this is a misinterpretation of the asymmetry, as local
taxonomic overlap already constitutes a kind of combination of precision and recall.

Another example is the Augmented Precision and Recall (AP & AR) presented in
[9]. It is also divided into a global and a local part of the measure. For the local part
two alternatives may be used: The Learning Accuracy (LA) and the Balanced Distance
Metric (BDM). LA was proposed by [10]. It compares two concepts based on their
distance in the tree (e.g. the length of the shortest path between the root and their most
specific common abstraction). BDM further develops the idea of LA by taking further
types of paths and a branching factor of the concepts into account (see [9]).

The latest measure for comparing concept hierarchies is the OntoRand index pro-
posed in [11]. It is a symmetric measure which extends techniques used in the clustering
community for comparing two partitions of the same set of instances. A concept hier-
archy is seen as a hierarchical partitioning of instances. For OntoRand two alternatives
exist to measure the similarity of concepts. The first alternative is based on the set of
common ancestors. The second alternative is based on the distance between two con-
cepts in the tree (like LA and BDM). An important constraint imposed on the concept
hierarchy is that both compared hierarchies must contain the same set of instances.



3 Criteria for Good Evaluation Measures

Given this variety of evaluation measures for concept hierarchies it is now the question
what is a "good” measure and can we give some criteria according to which to evaluate
the different measures. Measures fulfilling the following criteria will help to avoid the
misinterpretation of evaluation results and ease drawing the right conclusions for the
improvement of the evaluated ontology learning procedure.

The most important criterion is that a measure allows to evaluate an ontology
along multiple dimensions. This criterion is formulated in several papers like [9] and
[12]. Thus a user can weight different kinds of errors based on his own preferences.
This enables to better analyze the strengths and weaknesses of a learned ontology.

If a multi dimensional evaluation is performed, each measure should be influenced
just by one dimension, i.e. by one type of error only. For example, if one uses measures
for evaluating the lexical term layer of an ontology (e.g the lexical precision and recall)
and one also wants to evaluate the quality of the learned concept hierarchy (e.g. with
the taxonomic overlap), then a dependency between those measures should be avoided.

The second criterion is that the effect of an error onto the measure should be pro-
portional to the distance between the correct and the given result. For example, an error
near the root of a concept hierarchy should have a stronger effect on the evaluation
measure than an error nearer to the leafs (see also [12]).

The third criterion is closely related to the previous one. For measures with a
closed scale interval (e.g. [0..1]), a gradual increase in the error rate should also lead to
a gradual decrease in the evaluation results. For example, if a measure has the interval
[0..1] as its scale but already slight errors lead to a decrease of the returned results from
1 to 0.2 then it is difficult to distinguish between slight and severe errors (see [11]).

In Tab. 1 it is shown in how far the measures described in section 2 meet the criteria
listed in this section. The rating is based on the descriptions in [7], [9] and [11]. Addi-
tionally, the new findings from section 4.5 were used for rating the taxonomic overlap.
A measure can improve its multi dimensionality by two factors: either by removing the
influence of the lexical term layer on the evaluation of the concept hierarchy or by sep-
arately measuring different aspects of the hierarchy (e.g. precision and recall). None of
the measures removes the influence of the lexical term layer and only the augmented
precision and recall distinguishes between two aspects of the hierarchy. The Learning
Accuracy does not achieve the best score for the proportional error effect because it

Table 1. Rating of concept hierarchy measures

multi dimensionality  proportional error effect usage of interval
TO — + ?
AP & AR o + ?
LA - o ?
OntoRand' — +/— +/—
st + + +




considers the distance between the correct and the given answer only to some small
extent (see [9]). In the following a truly multi dimensional approach for evaluating an
ontology will be presented, thus overcoming the problems of the current measures.

4 Comparing Learned Ontologies with Gold Standards

In this section measures will be presented which can be used for an evaluation of the
lexical term layer and the concept hierarchy of an ontology. The measures extend the
idea of precision and recall to the gold standard based evaluation of ontologies. The
lexical term layer of an ontology will be evaluated with lexical precision and recall (see
section 4.2). For the concept hierarchy a framework of building blocks will be defined
in section 4.3. This framework defines a family of measures and it will be used for
systematically constructing a measure which fulfills the criteria from section 3.

In the following the simplified definition of a core ontology will be used. This def-
inition of an ontology only contains the lexical term layer and the concept hierarchy.
Similarly to [8], we define a core ontology as follows:

Definition 1. The structure O := (C,root, <) is called a core ontology. C is a set of
concept identifiers and root is a designated root concept for the partial order <¢ on C.
This partial order is called concept hierarchy or taxonomy. The equation¥c € C : ¢ <¢
root holds for this concept hierarchy.

In this definition of a core ontology the relation between lexical terms and their as-
sociated concept is a bijection, i.e. each term is associated with exactly one concept and
each concept with exactly one term. Thus it is possible to use the a lexical term as the
identifier of a concept. This restriction simplifies the following formulas. Nevertheless
it would be possible to generalize them to the case where an n : m relation between
concepts and lexical terms exists (in analogy to [6] and [7]).

4.1 Precision & Recall

This section gives a short overview of precision, recall and F-measure, as they are
known from information retrieval (see [13]). They are used for comparing a reference
retrieval (Ref’) with a computed retrieval (Comp) returned by a system. Precision and
recall are defined as follows:

_ |Comp N Ref | _ |Comp N Ref |
P(Ref,Comp) = “Comp| R(Ref,Comp) = R (1)

It is interesting that precision and recall are the inverse of each other:

P(Ref,Comp) = W = R(Comp, Ref) )

"1t is shown in [11] that the measures based on tree distance in some cases do not show an
proportional error effect and that they do not use the complete interval. These problems do not
exist for the OntoRand measure based on common ancestors.



The F-measure is used for giving a summarizing overview and for balancing the
precision and recall values. The F-measure is the harmonic mean of P and R.

2 - P(Ref, Comp) - R(Ref, Comp)

Fy (Ref, Comp) = P(Ref, Comp) + R(Ref, Comp)

3)

4.2 Lexical Precision & Recall

There exist several measures sufficient for evaluating the lexical term layer of an ontol-
ogy (see section 2). In this subsection the lexical precision and recall measures, as they
are described in [4], will be explained in a bit more detail. Later on they will be used in
conjunction with the measures for evaluating concept hierarchies, as they are presented
in section 4.3. Given a computed core ontology O¢ and a reference ontology Og, the
lexical precision (L P) and lexical recall (L R) are defined as follows:

CcnC
LR(O¢,0Or) = W 4)

Fig. 1. Example reference ontology (Or1, left) and computed ontology (Oc¢1, right)

The lexical precision and recall reflect how good the learned lexical terms cover the
target domain. For example, if one compares O¢1 and Op; in Fig. 1 with each other,
one gets LP(Oc1,Or1) = 4 = 0.67 and LR(Oc1, OR1) = 2 = 0.8.

4.3 Taxonomic Precision & Recall

In this subsection a framework of building blocks is described. It defines a family of
taxonomic precision and recall measures from which two concrete measures will be
selected afterward. Only the equations for the taxonomic precision measures will be
presented. The corresponding equations for the taxonomic recall measures can be easily
derived from them because of equation (2). This framework extends and improves the
framework used for the taxonomic overlap measures in [7]. It especially replaces the
previously used equation for comparing the position of two concepts with each other
leading to a completely different behavior of the measure (see also section 4.5).

Comparing Concepts As mentioned before, measures for comparing two concept hi-
erarchies with each other are usually divided into a kind of local and a global measure
(cf. section 2). The local measure compares the positions of two concepts and the global
measure is used for comparing two whole concept hierarchies. We start describing the
framework’s local measure. It is then used in the definition of the global measure.



For the local taxonomic precision the similarity of two concepts will be computed
based on characteristic extracts from the concept hierarchy. Such an extract should char-
acterize the position of a concept in the hierarchy, i.e. two extracts should contain many
common objects if the characterized objects are at similar positions in the hierarchy.
The proportion of common objects in the extracts should decrease with increasing dis-
similarity of the characterized concepts. Given such an characteristic extract ce, the
local taxonomic precision ¢p.. of two concepts ¢; € O¢ and ¢y € Op, is defined as

|ce(e1, Oc) Nee(ca, Or)|
tpee(ci, ca, Oc, ORr) := 5
Dee(C1, 2, Oc, OR) lce(cr, 00| (5

The characteristic extract from the concept hierarchy is an important building block
of the local taxonomic measure and several alternative instantiations exist. As we will
see below, they have a major influence on the properties of the corresponding global
measure. For the taxonomic overlap measure described in [7] it was suggested to char-
acterize a concept by its semantic cotopy, i.e. all its super- and subconcepts. Given the
concept ¢ € C and the ontology O, the semantic cotopy sc is defined as follows:

sc(e, 0) == {cilec; €eCNA(c; <eVe<g)} (6)

If one uses the semantic cotopy for defining the local taxonomic precision measure
tpse, the results will be heavily influenced by the lexical precision of O¢ because with
decreasing lexical precision more and more concepts of sc(c, O¢) are not contained
in O and sc(c, Or). This increases the probability that sc(c, O¢) contains such con-
cepts, leading to a direct dependency between the lexical and the taxonomic precision.
But according to section 3, evaluation measures should be judged by whether the dif-
ferent measures are independent of each other. So taxonomic measures based on the
semantic cotopy shouldn’t be used in conjunction with the lexical precision and recall.

This influence of lexical precision and recall on the taxonomic measures can be
avoided if one uses the common semantic cotopy csc as the characteristic extract. The
common semantic cotopy excludes all concepts which are not also available in the other
ontology’s set of concepts:

cse(e, 01,02) :={cilc; €C1NCaA(¢; <1¢eVe<yc)t @)

In Tab. 2 and 3 one can see the influence of inserting and replacing concepts in a
hierarchy. The tables contain the sets sc and csc for the ontologies Or1 and O¢1 which
were already used as an example for lexical precision and recall (see Fig. 1). One can
see that inserting and replacing concepts without actually changing the hierarchy has no
effect on the common semantic cotopy while the semantic cotopy is heavily influenced
by these changes on the lexical term layer of an ontology.

Besides the previously described extracts of the concept hierarchy, further extracts
are imaginable. For example, the upwards cotopy (see [7]) or the set of all direct sub-
concepts might be used. In [14] also measures based on the direct subconcepts were
evaluated. But [14] shows also that measures based on the semantic cotopy meet more
of the criteria from section 3.



Table 2. Semantic cotopies for the ontologies in Fig. 1.

c sc(e, Or1) sc(e, Oct)

root  {root, bike, car, van, coupé} {root, bike, BMX, auto, van, coupé}

car {root, car, van, coupé } -

auto - {root, auto, van, coupé}

van {root, car, van} {root, auto, van}
coupé {root, car, coupé} {root, auto, coupé}

bike {root, bike} {root, bike, BMX}
BMX - {root, bike, BMX}

Table 3. Common semantic cotopies for the ontologies in Fig. 1.

c cse(e,Or1,Oc1)  ese(e,Oc1, Or1)
root  {bike, van, coupé} {bike, van, coupé}
car  {root, van, coupé} -

auto - {root, van, coupé}

van {root} {root}
coupé {root} {root}

bike {root} {root}
BMX - {root, bike}

Comparing Concept Hierarchies It is now possible to define a framework for con-
structing a global taxonomic precision measure. Fig. 2 shows the building blocks used
in this framework for a global taxonomic precision measure.

local taxonomic precision

1 tp(e,e,Oc, Og) ifc € Cp
TP(Oc.On) = 1 > ’ "
clrcea (maxegey, tp(e, ¢, Oc, Or) ifc & Cr
concept set estimation

Fig. 2. Building blocks of the global taxonomic precision measure

The set of concepts whose local taxonomic precision values are summed up is the
first building block. Two alternatives may be used. The first alternative is to use the set
of concepts C¢ from the learned ontology. If one chooses this alternative, the global
taxonomic precision is influenced by the lexical precision. For example, if the lexical
precision of a learned ontology is approximately 5% (like in the empirical evaluation in
section 5.2) then for 95% of the concepts a local taxonomic precision value has to be
estimated because there doesn’t exist a corresponding concept in the reference ontology
(see below). If such an influence of the lexical precision should be avoided then the set
of common concepts Cc N Cg should be preferred. It especially makes sense if one also
uses a local taxonomic precision value based on the common semantic cotopy.



The local taxonomic precision is the next building block. It is used for comparing
the position of a concept in the learned hierarchy with the position of the same concept
in the reference hierarchy. Thus the current concept has to exist in both hierarchies.

An estimation of a local taxonomic precision value is the last building block. It is
only used if the current concept isn’t contained in both ontologies. Its usage is therefore
influenced by the chosen set of concepts (see above). In [7] it is suggested to make
an optimistic estimation by comparing the current concept with all concepts from the
reference ontology and choose the highest local taxonomic precision value. This ensures
that concepts which do not match on the lexical term layer (e.g. “auto” and “car” in
Fig. 1) will nonetheless match in the concept hierarchy and thus return a high local
taxonomic precision value. The optimistic estimation reduces the influence of lexical
precision but it may also cause misleading results.

In opposite to that, assuming a local taxonomic precision value of 0% if no match
on the lexical term layer can be found maximizes the influence of the lexical precision.
But if one wants to completely eliminate the influence of lexical precision one should
avoid this estimation building block anyway. This is done by only averaging the local
taxonomic precision values of the common concepts.

Concrete Measures In the following the previously presented building blocks will be
combined to concrete measures fulfilling the criteria from section 3. The measures will
be evaluated in section 5. In [14] further measures are described and evaluated. This
paper only contains the best two pairs of measures.

The first pair of measures consists of T'P;. and T'R.. They are based on the seman-
tic cotopy and are thus influenced by the lexical term layer. In the evaluation in section
5 they will be used for demonstrating the disadvantages of mixing the evaluation of
lexical term layer and concept hierarchy. The other building blocks are selected so that
they further increase this influence. This is achieved by computing the local taxonomic
precision for all learned concepts and by estimating the local taxonomic precision as 0
if the current concept isn’t also contained in the reference ontology.

1 tpse(c, ¢, Oc,Or) ifceCr
TPue(Oc, Or) = (51 D {0 ifedCp ®)
ceCco
TRsc(007 OR) = TPSC(OR, OC) 9)

All in all, the measures T' P, and T'R. do not allow a separate evaluation of lexical
term layer and concept hierarchy. For evaluation scenarios where a thorough analysis of
the learned ontologies is needed the measures T'P,,. and T'R.;. are better suited. Here
the building blocks will be selected so that the influence of the lexical term layer is
minimized. This is achieved by using the common semantic cotopy and by computing
the taxonomic precision values only for the common concepts of both ontologies. The
latter makes the estimation of local taxonomic precision values unnecessary.
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TPCSC(007 OR) == Z tpcsc<c7 c, OCa OR) (10)
ICe NCrl c€CoNCr
TRcsc(007 OR) = TPCSC(ORa OC) (11)

4.4 Taxonomic F- and F'-Measure

Like it is the case for precision and recall in information retrieval, also the taxonomic
precision and recall have to be balanced if one wants to output a combined measure.
Therefore the taxonomic F-measure is introduced, which is the harmonic mean of the
global taxonomic precision and recall.

2- TP(Oc, OR) - TR(OC7 OR)
TF(O¢,OR) :=
(Oc, Or) TP(Oc,ORr) +TR(Oc, Or)

A higher taxonomic F-measure corresponds to a better quality of the concept hierar-
chy. The meaningfulness with regard to the overall quality of the ontology (lexical level
+ taxxonomy) depends on the chosen building blocks. If T'F' is not influenced by the
lexical level then the taxonomic F'-measure (see [8]) may additionally be computed. It
is the harmonic mean of LR and T'F":

12)

2-LR(O¢,0R)-TF(O¢,ORr)
LR(Oc, OR) + TF(Oc, ORr)

TF'(Oc,OR) = (13)

4.5 Taxonomic Overlap

In [6] and [8] the taxonomic overlap measure is defined. It is also divided into a global
and a local part of the measure. The global taxonomic overlap 7O has the same building
blocks like T'P but instead of the local taxonomic precision it uses the local overlap to:

_ [sc(er, O1) N seea, O)
|SC(Cl, 01) U SC(CQ, 02)‘
Because to is a symmetric measure, it depends on the other building blocks (concept

set and estimation component) whether the global taxonomic overlap is symmetric or
asymmetric. We have shown the following lemma (cf. [14] for its proof):

tosc(c1, 2,01, 02) :

(14)

Lemma 1. Symmetric global taxonomic overlap measures can be solely derived from
taxonomic F-measures. The equation TO = TF /(2 — T'F') holds.

This lemma implies that symmetric 7O measures behave like T'F' measures (see
[14] for a symmetric T’O measure). In [6] and [8] an asymmetric overlap measure is
defined. There, this asymmetry is interpreted like a kind of precision and recall. But
in [14] it was shown that no strictly monotonic dependency exists between that asym-
metric 70 measure and corresponding 7'P and T'R measures. Thus the asymmetry
can not be interpreted like precision and recall. It should be avoided to use asymmetric
T O measures until the unclarity with regard to their interpretation is resolved. Instead
corresponding taxonomic precision and recall measures should be used.



5 Evaluation

In this section the measures presented in 4.3 will be analytically and empirically eval-
uated. In the analytical evaluation it will be checked in how far they fulfill the criteria
defined in section 3. Subsequently in the empirical evaluation, it will be shown in how
far the choice of the measure influences the outcome of the evaluation of an ontology
learning task.

5.1 Analytical Evaluation

First, it will be checked in how far the taxonomic measures are independent of the
measures for the lexical term layer. This corresponds to the first criterion that a good
set of measures allows an evaluation along multiple dimensions. Closely related to this
criterion is the objective that each measure is independent of the other measures. The
ontologies in Fig. 3 will be used for this purpose. Compared to O s there are three con-
cepts missing in O¢o, but the hierarchy of the remaining concepts is not changed. Also
in O¢s3 the hierarchy is not changed but the natural language identifier of two concepts
is changed (e.g. “car” is renamed to auto”). Thus the hierarchy of both ontologies is
perfectly learned but there are errors on the lexical term layer. This has to be reflected
by taxonomy measures which are not influenced by errors on the lexical term layer.

As one can see in Tab. 4 and 5 only the measures T'P,s. and T R, are independent
of the lexical precision and recall. But this was already expected from the properties
of the single building blocks of the taxonomic measures. It is more surprising to which
extent the lexical precision and recall influence T'P;. and T'R,.. The errors on the
lexical term layer of both learned ontologies lead to a higher decrease of the taxonomic
measures than of the lexical measures. This can be seen by comparing the values of the
taxonomic measures and of the lexical measures in Tab. 4. The values of the taxonomic
measures are lower than the corresponding values of the lexical measures although the
evaluated ontologies only contain errors on the lexical term layer.

Table 4. Evaluation of the ontologies in Fig. 3 with a semantic cotopy based measure

Compare O ro with LP LR T Pse TRs. TFsc TF!.
Oc2 100.00% 57.14% 100.00% 51.02% 67.57% 61.92%
Ocs 71.43% 71.43% 5425% 54.25% 54.25% 61.67%

Croot) (root) Croot)
Cear) Chbike) Cear) Cauto)  (bike)
Cvan) Goupé) (BMX) dandem) (van ) Goupé) (van ) Goupé) (BMX) nicycle

Fig. 3. Reference ontology (O g2, left) and two learned ontologies (O¢2, middle; O¢s, right)



Table 5. Evaluation of the ontologies in Fig. 3 with a common semantic cotopy based measure

Compare Oga with LP LR TP.se TRese TFese TF.s.
Oca2 100.00% 57.14% 100.00% 100.00% 100.00% 72.73%
Ocs 71.43% 71.43% 100.00% 100.00% 100.00% 83.33%

The second criterion of good evaluation measures was that the effect of an error onto
the measure should be proportional to the distance between the correct and the given
result. This criterion will be checked with the ontologies in Fig. 4. There, in O¢y, the
two concepts “car” and “’bike” are interchanged, corresponding to an error near the root
of the hierarchy. In O¢;5 the two leaf concepts “coupé” and "BMX” are interchanged.
Altogether the errors in Q¢4 are more serious than the errors in O¢s. Thus measures
which fulfill this second criterion should rate Oc4 worse than O¢. In Tab. 6 and 7 one
can see that both pairs of measures fulfill this criterion.

Croal) (oo (oot
CIORRCT (Bked>  Cear) Cears (Bike)
(van ) €oupd) (BMX) dandem - (van ) €oupé) (BMX) dander) - (van ) (BMX) €oupé) dander)

Fig. 4. Reference ontology (Ors, left) and two learned ontologies (O¢c4, middle; O¢s, right)

Table 6. Evaluation of the ontologies in Fig. 4 with a semantic cotopy based measure

Compare O3 with LP LR T Pse TR TFsc TF!.
Ocu 100.00% 100.00% 66.67% 66.67% 66.67% 80.00%
Ocs 100.00% 100.00% 83.33% 83.33% 83.33% 9091%

The third and last criterion of good evaluation measures was that a gradual increase
in the error rate should lead to a more or less gradual decrease in the evaluation results.
One can see from the previously given examples that T'P,s. and T R, fulfill this cri-
terion. Especially for the ontologies in Fig. 3 it returned perfect evaluation results. The
opposite is true for T'P,. and T'R,.: Because these measures are influenced by errors in
the lexical term layer as well as by errors in the concept hierarchy they will drop very
fast if both kinds of errors occur in an ontology. Additionally it was shown that they
are stronger influenced by errors in the lexical term layer than the lexical precision and
recall measure itself.

TP.s. and TR are all in all better suited for evaluating a concept hierarchy and
drawing conclusions about the strengths and weaknesses of the used learning procedure.



Table 7. Evaluation of the ontologies in Fig. 4 with a common semantic cotopy based measure

Compare Ogs with LP LR TP.se TRese TFese TF.,,
Oca 100.00% 100.00% 52.38% 52.38% 52.38% 68.75%
Ocs 100.00% 100.00% 76.19% 76.19% 76.19% 84.49%

5.2 Empirical Evaluation

In this section the previously described measures will be used in a real evaluation of
concept hierarchies learned with Hearst patterns (cf. [15], [1]). In this evaluation it will
be shown in how far the choice of the measure influences the lessons learned from eval-
uating an ontology learning task. For this evaluation, several ontologies for the tourism
domain were learned from a corpus of 4596 tourism related Wikipedia articles with
6.54 million tokens. The reference ontology was created by an experienced ontology
engineer within the GETESS project (see [16] and Tab. 9 for more details about the on-
tology). A more detailed description of the experiment and further results for ontologies
learned with other learning procedures and from other document corpora are available
for download [14].

Tab. 8 and 10 contain the evaluation results for the ontologies learned with the
Hearst patterns applied on the Wikipedia corpus. The learned ontologies were compared
with the GETESS reference ontology. These raw evaluation results should now be used
for deciding for which threshold the best results were achieved. Both tables contain
the results for the same ontologies but evaluated with the two different measures from
section 4.3.

Table 8. Evaluation of learned ontologies with TP, depending on threshold

0 LP LR TP.sc TRese TFese TFl.
0.0 1.00% 49.66% 22.26% 83.81% 35.18% 41.18%
03  727% 22779% 81.01% 59.60% 68.67% 34.22%
06 12.09% 11.22% 83.08% 62.11% 71.08% 19.39%
09 17.04%  7.82% 84.06% 73.85% 78.62% 14.23%

Looking at the results in Tab. 8 one can see that there is a major improvement of the
taxonomic precision if the threshold is increased from 0.0 to 0.3. But this improvement
on the taxonomic layer of the ontology is accompanied by a decrease of the lexical re-
call. According to the T'F,. one would judge the unfiltered ontology better. But from
the low lexical and taxonomic precision of the unfiltered ontology one may also con-
clude that it more or less accidentally” contains correct lexical entries and taxonomic
relations. So after a deeper analysis of the evaluation results one may come to the con-
clusion that a moderate filtering based on the confidence value should be applied.

This conclusion based on the results in Tab. 8 are also supported by the ontology’s

additional statistical values in Tab. 9. The first row of the table contains the values of



Table 9. Additional statistical values for the reference and the learned ontologies.

0  concepts loops avg.depth avg.sub sub.dev. avg.super super dev.

ref 294 1 5.14 5.22 4.42 1.03 0.17
0.0 14569 4973 119.29 3.57 532 1.52 22
0.3 893 97 3.8 2.81 14.89 1.22 0.87
0.6 246 24 3.29 2.68 8.39 1.16 0.78
0.9 116 2 3.17 2.76 6.06 1.08 0.35

the reference ontology against which the learned ontologies are compared. The follow-
ing rows contain the statistical values of the learned ontologies. One can see that the
unfiltered concept hierarchy contains 4,973 loops (i.e. a concept is also one of its su-
perconcepts) and that a leaf concept has 119 superconcepts in average. Additionally, it
is interesting to look at the branching factor of the hierarchy. There one can see that
a concept has 3.57 direct subconcepts in average with a very high deviation of 53.2.
Also the average number of direct superconcepts is quite high with 1.52 and a deviation
of 2.2. All these statistical values show that the unfiltered ontology is more or less de-
generated. Compared to these results the statistical values of the filtered ontologies are
much better.

This exemplary evaluation with T'P,s. and T'R.,. shows that they allow to make
conclusions about the real problems of a learned ontology and subsequently to identify
the best parameters for optimizing the used learning procedure. It is now the question
whether an evaluation with T P,. and T'R,. leads to the same conclusions.

Looking at the evaluation results in Tab. 10 one may also draw the conclusion that
a moderate filtering of the learned lexical entries and taxonomic relations improves the
results because the best T'F? . value is achieved for the ontology filtered with a threshold
of 0.3. But it is not clear in how far this improvement is only caused by the changes
on the lexical level (especially the improvement of the lexical precision) because the
improvement of the taxonomy is superposed by the influence of lexical precision and
recall on TP, and T Rg.. Thus, a truly multidimensional evaluation of the learned
ontologies is impossible because the used measures are not independent of each other.

Table 10. Evaluation of learned ontologies with 7' P;. depending on threshold 6

9 LP LR  TP.. TR.. TF. TF.,
00 100% 49.66% 0.10% 27.84% 021% 0.41%
03  727% 2279%  323% 8.67% 4.71% 7.80%
0.6 12.09% 11.22%  6.44% 3.61% 4.63% 6.55%
09 17.04% 7.82% 1040%  2.53% 4.07% 5.35%
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Conclusions

This paper presented a framework useful for gold standard based evaluation of ontolo-
gies. It was used for creating a new measure which allows to do a multi dimensional
evaluation. Furthermore, it was ensured that errors are weighted differently based on
their position in the concept hierarchy and that, compared to existing measures, the
scale interval of the measure is used more evenly.
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