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Abstract. The technical challenges associated with the development and de-
ployment of ontologies have been subject to a considerable number of research
initiatives since the beginning of the nineties. The economical aspects of these
processes are, however, still poorly exploited, impeding the dissemination of
ontology-driven technologies beyond the boundaries of the academic community.
This paper aims at contributing to the alleviation of this situation by proposing
ONTOCOM (Ontology Cost Model), a model to predict the costs arising in on-
tology engineering processes. We introduce a methodology to generate a cost
model adapted to a particular ontology development strategy, and an inventory
of cost drivers which influence the amount of effort invested in activities per-
formed during an ontology life cycle. We further present the results of the model
validation procedure, which covered an expert-driven evaluation and a statistical
calibration on 36 data points collected from real-world projects. The validation
revealed that ontology engineering processes have a high learning rate, indicat-
ing that the building of very large ontologies is feasible from an economic point
of view. Moreover, the complexity of ontology evaluation, domain analysis and
conceptualization activities proved to have a major impact on the final ontology
engineering process duration.

1 Introduction
The popularity of ontologies grows with the emergence of the Semantic Web. Nev-
ertheless, their large scale dissemination – in particular beyond the boundaries of the
academic community – is inconceivable in the absence of methods which address the
economic challenges of ontology engineering processes in addition to the technical and
organizational ones. A wide range of ontology engineering methodologies have been
elaborated in the Semantic Web community [6]. They define ontology development as
a well-structured process, which shows major similarities with established models from
the neighboring area of software engineering. Unlike adjacent engineering disciplines
these methodologies, however, ignore the economic aspects of engineering processes,
which are fundamental in real-world business contexts. Topics such as costs estima-
tion, quality assurance procedures, process maturity models, or means to monitor the
business value and the impact of semantic technologies at corporate level have been
marginally exploited so far.



This paper aims at contributing to the alleviation of this situation. We introduce
ONTOCOM (Ontology Cost Model), a model for predicting the costs related to on-
tology engineering processes. In this context we describe a methodology to generate a
cost model suitable for particular ontology development strategies, and an inventory of
cost drivers for which we demonstrate to have a direct impact on the amount of effort
invested during an ontology life cycle. ONTOCOM has been subject to an extensive
validation procedure. This covered two phases: an expert-driven evaluation and a sta-
tistical calibration, which adjusted the predictions of the model according to 36 data
points collected from empirical ontology engineering processes.

The remaining of this paper is organized as follows: Section 2 examines general-
purpose cost estimation methods w.r.t. their relevance for the ontology engineering field.
Building upon the results of this analysis Section 3 gives a detailed description of the
ONTOCOM cost prediction model and explains how it can be applied to arbitrary on-
tology engineering processes. Section 4 discusses the results of the evaluation. We con-
clude the paper with related and future work (Section 5).

2 Cost Estimation Methodologies
In order to reliably approximate the development efforts the engineering team needs
to specify a method for cost estimation in accordance with the particularities of the
current project as regarding product, personnel and process aspects. This specification
task can be accomplished either by building a new cost model with the help of dedicated
methodologies or by adapting existing general-purpose ones to the characteristics of a
specific setting.

Due to its high relevance in real-world situations cost estimation is approached by a
wide range of methods, often used in conjunction in business context due to their opti-
mal applicability to particular classes of situations. We give an overview of some of the
most important ones [1, 10, 15]:
1) Analogy Method. The main idea of this method is the extrapolation of available
data from similar projects to estimate the costs of the proposed project. The method
is suitable in situations where empirical data from previous projects is available and
trustworthy. It highly depends on the accuracy in establishing real differences between
completed and current projects.
2) Bottom-Up Method. This method involves identifying and estimating costs of in-
dividual project components separately and subsequently combining the outcomes to
produce an estimation for the overall project. It can not be applied early in the life cy-
cle of the process because of the lack of necessary information related to the project
components. Nevertheless since the costs to be estimated are related to more manage-
able work units, the method is likely to produce more accurate results than the other
approaches.
3) Top-Down Method. This method relies on overall project parameters. For this pur-
pose the project is partitioned top-down into lower-level components and life cycle
phases (so-called work breakdown structures [1, 10]). The method is applicable to early
cost estimates when only global properties are known, but it can be less accurate due
to the decreased focus on lower-level parameters and technical challenges. These are
usually predictable later in the process life cycle, at most.



4) Expert Judgment/Delphi Method. This approach is based on a structured process
for collecting and distilling knowledge from a group of human experts by means of a se-
ries of questionnaires interspersed with controlled opinion feedback. The involvement
of human experts using their past project experiences is a significant advantage of this
approach. The most extensive critique point is related to the subjectivity of the estima-
tions and the difficulties to explicitly state the decision criteria used by the contributors.
5) Parametric/Algorithmic Method. This method involves the usage of mathemati-
cal equations based on research and previous project data. The method analyzes main
cost drivers of a specific class of projects and their dependencies, and uses statistical
techniques to adjust the corresponding formulas. The generation of a proved and tested
cost model using the parametric method is directly related to the availability of reliable
project data to be used in calibrating the model.

Given the current state of the art in ontology engineering the top-down, parametric
and expert-based methods form a viable basis for the development of a cost estima-
tion model in this field.1 A combination of the three is considered in many established
engineering disciplines as a feasible means to reach a balance between the low amount
of reliable historical data and the accuracy of the cost estimations [1, 15]. The work
breakdown structure for ontology engineering is to a great extent described by existing
ontology engineering methodologies. Further on, the cost drivers associated with the
parametric method can be derived from the high number of case studies available in
the literature. The limited amount of accurate empirical data can be counterbalanced by
taking into account the significant body of expert knowledge available in the Semantic
Web community. The next section describes how the three methods were jointly applied
to create ONTOCOM.

3 The ONTOCOM Model
The cost estimation model is realized in three steps. First a top-down work breakdown
structure for ontology engineering processes is defined in order to reduce the complex-
ity of project budgetary planning and controlling operations down to more manageable
units [1, 10]. The associated costs are then elaborated using the parametric method. The
result of the second step is a statistical prediction model (i.e. a parameterized mathe-
matical formula). Its parameters are given start values in pre-defined intervals, but need
to be calibrated on the basis of previous project data. This empirical information com-
plemented by expert estimations is used to evaluate and revise the predictions of the
initial a-priori model, thus creating a validated a-posteriori model.

3.1 The Work Breakdown Structure

The top-level partitioning of a generic ontology engineering process can be realized by
taking into account available process-driven methodologies in this field.2 According to
them ontology building consists of the following core steps (cf. Figure 1):

1 By contrast the bottom-up method can not be applied in early stages of the ontology engi-
neering process, while the analogy method requires means to compare among ontologies and
associated development processes.

2 Refer, for instance, to [6] for a recent overview on ontology engineering methodologies.



1) Requirements Analysis. The engineering team consisting of domain experts and
ontology engineers performs a deep analysis of the project setting w.r.t. a set of pre-
defined requirements. This step might also include knowledge acquisition activities
in terms of the re-usage of existing ontological sources or by extracting domain infor-
mation from text corpora, databases etc. If such techniques are being used to aid the
engineering process, the resulting ontologies are to be subsequently customized to the
application setting in the conceptualization/implementation phases. The result of this
step is an ontology requirements specification document [16]. In particular this contains
a set of competency questions describing the domain to be modelled by the prospected
ontology, as well as information about its use cases, the expected size, the information
sources used, the process participants and the engineering methodology.
2) Conceptualization. The application domain is modelled in terms of ontological
primitives, e. g. concepts, relations, axioms.3

3) Implementation. The conceptual model is implemented in a (formal) representation
language, whose expressivity is appropriate for the richness of the conceptualization.
If required reused ontologies and those generated from other information sources are
translated to the target representation language and integrated to the final context.
4) Evaluation. The ontology is evaluated against the set of competency questions. The
evaluation may be performed automatically, if the competency questions are repre-
sented formally, or semi-automatically, using specific heuristics or human judgement.
The result of the evaluation is reflected in a set of modifications/refinements at the re-
quirements, conceptualization or implementation level.

Requirements analysis
motivating scenarios, use cases, existing solutions, 
cost estimation, competency questions, application requirements

Conceptualization
conceptualization of the model, integration and extension of 
existing solutions

Implementation
implementation of the formal model in a representation language

K
now

ledge acquisition

E
valuation

D
ocum

entation

Fig. 1. Typical Ontology Engineering Process

Depending on the ontology life cycle underlying the process-driven methodology,
the aforementioned four steps are to be seen as a sequential workflow or as parallel
activities. Methontology [6], which applies prototypical engineering principles, consid-
ers knowledge acquisition, evaluation and documentation as being complementary
support activities performed in parallel to the main development process. Other method-
ologies, usually following a classical waterfall model, consider these support activities
as part of a sequential engineering process. The OTK-Methodology [16] additionally
introduces an initial feasibility study in order to assess the risks associated with an
ontology building attempt. Other optional steps are ontology population/instantiation
and ontology evolution/maintenance. The former deals with the alignment of concrete

3 Depending on methodology and representation language these ontological primitives might
have different names, e.g. class or concept, relation or relationship, slot, axiom, constraint.



application data to the implemented ontology. The latter relates to modifications of the
ontology performed according to new user requirements, updates of the reused sources
or changes in the modelled domain. Further on, likewise related engineering disciplines,
reusing existing knowledge sources—in particular ontologies—is a central topic of on-
tology development. In terms of the process model introduced above, ontology reuse
is considered a knowledge acquisition task.

The parametric method integrates the efforts associated with each component of this
work breakdown structure to a mathematical formula as described below.

3.2 The Parametric Equation

ONTOCOM calculates the necessary person-months effort using the following equa-
tion:

PM = A ∗ Sizeα ∗
∏

CDi (1)

According to the parametric method the total development efforts are associated with
cost drivers specific for the ontology engineering process and its main activities. Expe-
riences in related engineering areas [1, 7] let us assume that the most significant factor
is the size of the ontology (in kilo entities) involved in the corresponding process or
process phase. In Equation 1 the parameter Size corresponds to the size of the ontol-
ogy i.e. the number of primitives which are expected to result from the conceptualiza-
tion phase (including fragments built by reuse or other knowledge acquisition methods).
The possibility of a non-linear behavior of the model w.r.t. the size of the ontology is
covered by parameter α. The constant A represents a baseline multiplicative calibration
constant in person months, i.e. costs which occur “if everything is normal”. The cost
drivers CDi have a rating level (from Very Low to Very High) that expresses their im-
pact on the development effort. For the purpose of a quantitative analysis each rating
level of each cost driver is associated to a weight (effort multiplier EMi). The produc-
tivity range PRi of a cost driver (i.e. the ratio between the highest and the lowest effort
multiplier of a cost driver PRi = max(EMi)

min(EMi)
) is an indicator for the relative importance

of a cost driver for the effort estimation [1]. In the a-priori cost model a team of five on-
tology engineering experts assigned productivity ranges between 1.75 and 9 to the effort
multipliers, depending on the perceived contribution of the corresponding cost driver to
the overall development costs. The final effort multipliers assigned to the rating levels
are calculated such that the contribution of an individual rating level is linear and the
resulting productivity range for a cost driver corresponds to the average calculated from
the expert judgements. In the same manner, the start value of the A parameter was set
to 3.12. These values were subject to further calibration on the basis of the statistical
analysis of real-world project data (cf. Section 4).

3.3 The ONTOCOM Cost Drivers

The ONTOCOM cost drivers, which are expected to have a direct impact on the total
development efforts, can be roughly divided into three categories:
1) PRODUCT-RELATED COST DRIVERS account for the impact of the characteristics of
the product to be engineered (i.e. the ontology) on the overall costs. The following cost



drivers were identified for the task of ontology building:
• Domain Analysis Complexity (DCPLX) to account for those features of the appli-
cation setting which influence the complexity of the engineering outcomes,
• Conceptualization Complexity (CCPLX) to account for the impact of a complex
conceptual model on the overall costs,
• Implementation Complexity (ICPLX) to take into consideration the additional ef-
forts arisen from the usage of a specific implementation language,
• Instantiation Complexity (DATA) to capture the effects that the instance data re-
quirements have on the overall process,
• Required Reusability (REUSE) to capture the additional effort associated with the
development of a reusable ontology,
• Evaluation Complexity (OE) to account for the additional efforts eventually invested
in generating test cases and evaluating test results, and
• Documentation Needs (DOCU) to state for the additional costs caused by high doc-
umentation requirements.
2) PERSONNEL-RELATED COST DRIVERS emphasize the role of team experience, abil-
ity and continuity w.r.t. the effort invested in the engineering process:
• Ontologist/Domain Expert Capability (OCAP/DECAP) to account for the per-
ceived ability and efficiency of the single actors involved in the process (ontologist and
domain expert) as well as their teamwork capabilities,
• Ontologist/Domain Expert Experience (OEXP/DEEXP) to measure the level of
experience of the engineering team w.r.t. performing ontology engineering activities,
• Language/Tool Experience (LEXP/TEXP) to measure the level experience of the
project team w.r.t. the representation language and the ontology management tools,
• Personnel Continuity (PCON) to mirror the frequency of the personnel changes in
the team.
3) PROJECT-RELATED COST DRIVERS relate to overall characteristics of an ontology
engineering process and their impact on the total costs:
• Support tools for Ontology Engineering (TOOL) to measure the effects of using
ontology management tools in the engineering process, and
• Multisite Development (SITE) to mirror the usage of the communication support
tools in a location-distributed team.

The ONTOCOM cost drivers were defined after extensively surveying recent ontol-
ogy engineering literature and conducting expert interviews, and from empirical find-
ings of numerous case studies in the field.4 For each cost driver we specified in detail
the decision criteria which are relevant for the model user in order for him to determine
the concrete rating of the driver in a particular situation. For example for the cost driver
CCPLX—accounting for costs produced by a particularly complex conceptualization—
we pre-defined the meaning of the rating levels as depicted in Table 1. The human ex-
perts assigned in average a productivity range of 6.17 to this cost driver. The resulting
non-calibrated values of the corresponding effort multipliers are as follows: 0.28 (Very
Low), 0.64 (Low), 1 (Nominal), 1.36 (High) and 1.72 (Very High) [11]. The appropriate
value should be selected during the cost estimation procedure and used as a multiplier in

4 See [11, 12] for a detailed explanation of the approach.



equation 1. Depending on their impact on the overall development effort, if a particular
activity increases the nominal efforts, then it would be rated with values such as High
and Very High. Otherwise, if it causes a decrease of the nominal costs, then it would be
rated with values such as Low and Very Low.

Rating Level Effort multiplier Description
Very Low 0.28 concept list
Low 0.64 taxonomy, high nr. of patterns, no constraints
Nominal 1.0 properties, general patterns available, some constraints
High 1.36 axioms, few modelling patterns, considerable nr. of constraints
Very High 1.72 instances, no patterns, considerable nr. of constraints

Table 1. The Conceptualization Complexity Cost Driver CCPLX

The decision criteria associated with a cost driver are typically more complex than
in the previous example and might be sub-divided into further sub-categories, whose
impact is aggregated to the final effort multiplier of the corresponding cost driver by
means of normalized weights [11, 12].

3.4 Using ONTOCOM in Ontology Engineering Processes

ONTOCOM is intended to be applied in early stages of an ontology engineering process.
In accordance to the process model introduced above the prediction of the arising costs
can be performed during the feasibility study or, more reliably, during the requirements
analysis. Many of the input parameters required to exercise the cost estimation are ex-
pected to be accurately approximated during this phase: the expected size of the ontol-
ogy, the engineering team, the tools to be used, the implementation language etc.5

The high-level work breakdown structure foreseen by ONTOCOM can be further
refined depending of the ontology development strategy applied in an organization in
a certain application scenario. As explained in Section 3.1 ONTOCOM distinguishes
solely between the most important phases of ontology building: requirements analysis,
conceptualization, implementation, population, evaluation and documentation. Further
on, it focuses on sequential development processes (as opposed to, for instance, rapid
prototyping, or iterations of the building workflow). In case the model is applied to a
different ontology development process, the relevant cost drivers are to be aligned (or
even re-defined) to the new sub-phases and activities, while the parametric equation
needs to be adapted to the new activity breakdown. An example of how ONTOCOM
can be applied to an ontology development methodology targeted at rapid prototyping
in distributed scenarios is provided in [12].

After this optional customization step the model can be utilized for cost predic-
tions.6 For this purpose the engineering team needs to specify the rating levels associ-
ated with each cost driver. This task is accomplished with the help of decision criteria

5 Ontology engineering methodologies foresee this information to be collected in a ontology
requirements document at the end of this phase [16].

6 However, if new cost drivers have been defined in addition to the ones foreseen by ONTOCOM,
these should be calibrated using empirical data.



which have been elaborated for each of the cost driver rating levels (such as those for
the CCPLX cost driver illustrated in Figure 2). Cost drivers which are not relevant for a
particular scenario should be rated with the nominal value 1, which does not influence
the result of the prediction equation.

4 Evaluation
For the evaluation of the model we relied on the quality framework for cost models
by Boehm[1], which was adapted to the particularities of ontology engineering. The
framework consists of 10 evaluation criteria covering a wide range of quality aspects,
from the reliability of the predictions to the model ease-of-use and its relevance for
arbitrary ontology engineering scenarios (Table 2).

No Criterion Description
1 Definition - clear definition of the estimated and the excluded costs

- clear definition of the decision criteria used to specify the cost drivers
- intuitive and non-ambiguous terms to denominate the cost drivers

2 Objectivity - objectivity of the cost drivers and their decision criteria
3 Constructiveness - human understandability of the model predictions
4 Detail - accurate phase and activity breakdowns
5 Scope - usability for a wide class of ontology engineering processes
6 Ease of use - easily understandable inputs and options

- easily assessable cost driver ratings based on the decision criteria
7 Prospectiveness - model applicability in early phases of the project
8 Stability - small differences in inputs produce small differences in outputs
9 Parsimony - lack of highly redundant cost drivers

- lack of cost drivers with no appreciable contribution to the results
10 Fidelity - reliability of the predictions

Table 2. The ONTOCOM Evaluation Framework

The evaluation was conducted in two steps. First a team of experts in ontology
engineering evaluated the a-priori model, in particular the ONTOCOM cost drivers,
w.r.t. their relevance to cost issues (Criteria 1 to 8 in the table above) . Second the
predictions of the model were compared with 36 observations from real world projects
(Criteria 9 and 10 of the quality framework).

4.1 The Expert-based Evaluation

The evaluation of the a-priori model was performed by conducting interviews with two
groups of independent experts in the area of ontology engineering. Considering that the
people best placed to give a comprehensive assessment of the cost estimation model are
IT practitioners or researchers being directly involved in theoretical or practical issues
of ontology engineering, we organized two experts groups affiliated in both communi-
ties, which evaluated the model sequentially. The first group consisted of 4 academics
whose research was in the area of Semantic Web and Ontology Engineering. The sec-
ond group brought together 4 researchers and 4 IT senior managers from companies
with a Semantic Web profile. Participants were given a one hour overview of the ON-
TOCOM approach, followed by individual interviews. We summarize the key findings



of the conducted interviews categorized according to the criteria depicted in Table 2:
• Definition/Constructiveness The first draft of the model did not include the ontology
evaluation activity. The cost driver Evaluation Complexity (OE) was introduced to the
model for this purpose. The Ontology Instantiation (OI) cost driver was extended with
new decision criteria and minor modifications of the terminology were performed.
• Objectivity The objectivity of the cost drivers and the associated decision criteria
were evaluated by the participants favorably. Both suffered minor modifications. W.r.t.
the size of the ontology, a key parameter of the model, some of the participants ex-
pressed the need for a more careful distinction between the impact of the different
types of ontological primitives (e.g. concepts, axioms, relationships) w.r.t. the total ef-
forts. In particular, as axioms and relationships between concepts are more challenging
to be modelled than simple concepts and taxonomical structures, they recommended
that this difference should be reflected by the parametric model. While the current ver-
sion of ONTOCOM does not include this option, we are investigating the possibility
of introducing a revised size formula which associates particular ontology primitives’
categories to normalized weights:

Size = w1 ∗NoClassesα1 + w2 ∗NoRelationsα2 + (1− w1 − w2) ∗NoAxiomsα3 (2)

A final direction w.r.t this issue is planed for the a-posteriori model, as we require a
significant set of empirical data in order to prove the validity of the experts’ recommen-
dations.
• Detail/Scope The cost drivers covered by the model were unanimously estimated to
be relevant for the ontology engineering area. The collection of empirical data demon-
strated that the model accommodates well to many real-world settings, situation which
was also confirmed by applying ONTOCOM to the DILIGENT ontology engineering
methodology[12]. However, the majority of the evaluators emphasized the need of a
revised model for reuse and evolution purposes, an issue which will be investigated in
the future. W.r.t. the detail of the cost drivers covered by the model, three new product
drivers stating for the complexity of the domain analysis, conceptualization and imple-
mentation (DCPLX, CCPLX and ICPLX, see Section 3.3) were introduced in return to
an original cost driver Ontology Complexity (OCPLX). Some of the participants also
expressed the need for a more detailed coverage of the ontology evaluation task in en-
gineering processes, so as to distinguish between the evaluation of an ontology against
a set of competency questions and its fitness of use within a particular software system.
A final decision w.r.t. this modification requires, however, a more significant set of em-
pirical data.
• Ease of use The goal and the scope of the model were easily understood by the inter-
viewees. During the data collection procedure, the only factor which seemed to require
additional clarification was the size of the ontology, which was conceived to cover all
types of ontological primitives (e.g. concepts/classes, properties, axioms, rules, con-
straints, manually built instances). Further on, the experiments revealed that there is no
clear understanding between the re-usage of existing ontologies and the acquisition of
ontologies from more un-structured knowledge sources such as text documents. How-
ever, this latter issue can not be necessarily considered as a weakness of the model itself,



but as the result of a potentially ambiguous definition of the two activities in current on-
tology engineering methodologies.
• Prospectiveness Some of the participants manifested concerns w.r.t. the availability
of particular model parameters in early phases of the engineering process. However,
as underlined in a previous section, many of the input parameters are foreseen to be
specified in the ontology requirements specification document in the last part of the re-
quirements analysis phase.
• Stability This is ensured by the mathematical model underlying ONTOCOM.

4.2 Evaluation of the Prediction Quality

The remaining two evaluation criteria Fidelity and Parsimony were approached af-
ter the statistical calibration of the model. In order to determine the effort multipliers
associated with the rating levels and to select non-redundant cost drivers we followed
a three-stage approach: First experts estimated the a-priori effort multipliers based on
their experience as regarding ontology engineering. Second we applied linear regres-
sion to real world project data to obtain a second estimation of the effort multipliers.7

Third we combined the expert estimations and the results of the linear regression in a
statistically sound way using Bayesian analysis [2].

Data Collection The results reported in this paper are based on 36 structured inter-
views with ontology engineering experts [13]. The interviews were conducted within a
three months period and covered 35 pre-defined questions related to the aforementioned
cost drivers. The survey participants are representative for the community of users and
developers of semantic technologies. The group consisted of individuals affiliated to
industry or academia, who were involved in the last 3 to 4 years in ontology building
projects in areas such as skill management, human resources, medical information sys-
tems, legal information systems, multimedia, Web services, and digital libraries.8 The
average number of ontology entities in the surveyed ontologies is 830 with a median
at 330. It took the engineers in average 5.3 month (median 2.5) to build the ontolo-
gies. 40% of the ontologies were built from scratch. Reused ontologies contributed in
average 50% (median 50%) of ontology entities to the remaining 60% of the surveyed
ontologies.

Data Analysis In order to adapt the prediction model in accordance to experiences
from previous ontology engineering processes we derived estimates of the cost driver
productivity ranges from the collected data set. The estimates were calculated following
a linear regression approach combined with Bayesian analysis. This approach allows the
usage of human judgement and data-driven estimations in a statistically consistent way,
such that the variance observed in either of the two determines its impact to the final
values.9 Linear regression models perform better with an increasing number of incor-

7 Linear regression is a mathematical method to calculate the parameters of a linear equation so
that the squared differences between the predictions from the linear equation and the observa-
tions are minimal [14].

8 Around 50% of the interviewees were affiliated to industry.
9 Refer to [4] for an exhaustive explanation of the application of Bayesian analysis for cost

estimation purposes.



porated observations and a decreasing number of parameters to estimate. Its drawbacks
can be compensated with the help of human estimations [4] and by excluding those
parameters which have an insignificant influence on the final prediction value or are
highly correlated.

In order to select relevant cost drivers for the ONTOCOM model we performed
a correlation analysis on the historical data (Table 3). We excluded the following cost

Cost driver Correlation Cost driver Correlation Comment
with PM with PM

SIZE 0.50 DATA 0.31 strong correlation with DCPLX
OE 0.44 SITE 0.27 low number of different data points
DCPLX 0.39 DOCU 0.22 moderated influence; strong
REUSE 0.38 correlation with OE
ICPLX 0.29 LEXP/TEXP 0.13 little influence; strong
CCPLX 0.24 correlation with OXEP/DEEXP
OCAP/DECAP -0.19 PCON 0.04 low number of different data points
OXEP/DEEXP -0.36 SizeReused

SizeT otal
-0.10 little influence

Table 3. Selection of Relevant Cost Drivers using Correlation Analysis

drivers in order to get more accurate results. The cost driver DATA is strongly correlated
with the cost driver DCPLX. Most of the surveyed projects took place at one site result-
ing in limited information about the actual influence of the SITE parameter, which was
therefore excluded. The cost driver DOCU highly correlates with the OE cost driver
and has only moderate influence on the effort. A similar line of reasoning applies to the
cost drivers LEXP/TEXP which are highly correlated with OXEP/DEEXP while mod-
estly contributing to the prediction variable. The surveyed projects did not experience
a permanent personnel turnover, resulting in a very low correlation coefficient for the
cost driver PCON. Intriguingly, reusing ontologies had only a limited effect on the on-
tology building effort as indicated by the small negative correlation between SizeReused

SizeT otal

and the effort. Most interviewees reported major difficulties translating and modifying
reused ontologies, which obviously offset most of the time savings expected from on-
tology reuse. The cost driver TOOL was not considered in the calibration, because it
did not differentiate the projects (i.e. all data points utilized only ontology editors).

The exclusion of the mentioned cost drivers from the current ONTOCOM calibra-
tion does not mean, that those cost drivers are not relevant for predicting the ontology
building effort. With the currently available data set it is, however, not possible to pro-
vide accurate estimates for these cost drivers. The prediction quality for multi-site de-
velopments and projects with a high personal turnover might suffer from the exclusion
of the corresponding drivers. However, the accuracy of the prediction for the remaining
cost drivers increases.

Calibration Results The approximation of the effort multipliers with the linear re-
gression approach implies a reformulation of equation 1. After applying the logarithm
function and introducing the parameters βi as exponents for the cost drivers we ob-



tained the equivalent equation 3.10 βi are scaling factors by which the existing effort
multipliers should be scaled in order to fit the model. We recall that α is a learning rate
factor also used to model economies of scale.

ln(PMX) = ln(A) + α ∗ ln(SizeX) +
∑

βi ∗ ln(CDXi) (3)

The linear regression delivers a best fit for the effort multipliers w.r.t. to the surveyed
empirical data. However, the relatively small sample size results in a limited accuracy
of the estimated effort multipliers. This drawback can be overcome with the help of
the a-priori estimations of the parameters, which were defined by human experts. A
linear combination of expert estimations and historical data is, however, sub-optimal.
The combination should take into account the number of data points used for the linear
regression and the variance observed in the expert ratings as well as in the data points.
A mulitplier which all experts have given the same rating, while the linear regression
results in a high variance should be influenced less by the data than by the experts.
Bayesian analysis is a way to achieve the desired outcome [4].

β∗∗ = [
1

s2
X ′X + H∗]−1 × [

1

s2
X ′Xβ + H∗b∗] (4)

Equation 4 delivers the estimations of the scaling factor β∗∗ combining expert
knowledge and empirical data in a statistically sound way. s2 is the variance of the resid-
ual data of the sample; X is the matrix of observations; and H∗ and b∗ is the inverse
of the covariance matrix and the mean of the expert estimations, respectively. Figure 2
exemplifies the approach. The lines depict the probability distribution of the produc-
tivity range estimations for the expert judgement, the data analysis and the Bayesian
combination, respectively. The arrows point to the corresponding means. We note that
the experts judgement indicates a productivity range for the cost driver CCPLX of 6.17
with a small variance. Estimating the productivity range based on the data results in a
mean of 7.05 with a higher variance, though. The Bayesian analysis induces a shift of
the estimation towards the data-driven estimation, but only with a small fraction because
its higher data variance.

Table 4 summarizes the results of the Bayesian analysis. In column Correlation
with PM we list the correlation coefficients for the reduced number of cost drivers with
the effort in person months (PM). In the Significance column we plot the confidence
level for the estimation. Not all effort multipliers could be determined with the same
accuracy. A lower confidence level indicates a better estimation. The calibration is very
good for, for instance, the exponent α (SIZE), but less accurate for the effort multipliers
related to OCAP/DECAP. The Productivity range column lists the relative influence a
cost driver has on the final prediction.

10 This step is only possible if the data is distributed exponentially, thus we have significantly
more data points with a low number of entities than with a high number of entities. This holds
true for the collected data.
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Cost Driver Correlation Significance Productivity range
with PM

SIZE 0.50 0.001 α = 0.5
OE 0.44 0.034 4.0
DCPLX 0.39 0.063 3.2
REUSE 0.38 0.528 5.2
CCPLX 0.24 0.311 6.3
OXEP/DEEXP -0.36 0.060 1.5
ICPLX 0.29 0.299 0.6
OCAP/DECAP -0.19 0.925 1.5

Table 4. Statistical Data and Productivity Range of the Effort Multipliers

Based on the results of the calibration Figure 4.2 compares the predictions from
the calibrated model with the observations. In order to visualize the results we have
normalized the data with the product of the corresponding cost drivers. The gray lines
indicate a range around the prediction adding and subtracting 75% of the estimated
effort. 75% of the historical data points lie within this range. For the corresponding 30%
range the model covers 32% of the real-world data. This indicates a linear behavior of
deviation which we consider quite accurate for a very first model. Our goal is that 75%
of the data lie in the range of adding and subtracting 20% of the estimated effort.

Discussion of the Calibration Results Although any prediction model provides solely
an approximation of the true building efforts, this calibration is already helpful to get
an early impression on the expected values. Experiences with cost estimation models in
established engineering disciplines suggest that a calibration for a particular company
or project team yields more accurate estimations than a general-purpose calibration.
Our calibration may therefore predominantly serve as an example for a more context-
specific calibration process and may help to identify the resource-intensive activities in
a generic ontology engineering process. Moreover, project teams can compare their es-
timations against a general average value as provided by us. Note also that a calibration
uses historical data to estimate future outcomes. Although the average and the variation
observed in the historical data may remain constant in future projects, the predicted ef-
fort for any specific project may still significantly differ from the actual effort.
Regarding the quality of our model w.r.t. the calibration accuracy it is important to note



that the estimations for the cost drivers OCAP/DECAP and REUSE have a low signif-
icance. For the cost drivers OCAP/DECAP this leaves room for improvement, as the
data analysis counterintuitively suggests that more capable project teams need longer to
develop an ontology. We obtained the same result for the cost driver OEXP/DEEXP.
The main reason for this artefact may be the fact that ontology engineers from academia
were more experienced, implying that they invested more time in developing ontologies
than people from industry, whose mode of operation might have been motivated by dif-
ferent factors as in academic projects.
Another interesting finding of the analysis is the relative importance of the cost drivers
Ontology evaluation (OE), Domain complexity (DCPLX) and Conceptualization
complexity (CCPLX) in correlation with the observed significance. This indicates that
any facilitation in those areas may result in major efficiency gains w.r.t. the overall on-
tology engineering effort. Moreover, the very high learning rate indicates that the build-
ing of very large ontologies is feasible from an economic point of view, although we
admit that the number of data points for ontologies larger than 1.000 ontology entities
is comparatively low.

5 Related Work

Cost estimation methods have a long-standing tradition in more mature engineering
disciplines such as software engineering or industrial production [1, 7, 15]. Although
the importance of cost issues is well-acknowledged in the community, as to the best
knowledge of the authors, no cost estimation model for ontology engineering has been
published so far. Analogue models for the development of knowledge-based systems
(e.g., [5]) implicitly assume the availability of the underlying conceptual structures. [9]
provides a qualitative analysis of the costs and benefits of ontology usage in application
systems, but does not offer any model to estimate the efforts. [3] presents empirical
results for quantifying ontology reuse. [8] adjusts the cost drivers defined in a cost
estimation model for Web applications w.r.t. the usage of ontologies. The cost drivers,
however, are not adapted to the requirements of ontology engineering and no evaluation
is provided. We present an evaluated cost estimation model, introducing cost drivers
with a proved relevance for ontology engineering, which can be applied in the early
stages of an ontology development process.

6 Conclusion

The application of ontologies in commercial applications depends on the availability
of appropriate methodologies guiding the ontology development process and on meth-
ods for an effective cost management. We propose a parametric cost estimation model
for ontologies by identifying relevant cost drivers having a direct impact on the effort
invested in ontology building. We evaluate the model a-priori and a-posteriori.

The a-priori evaluation shows the validity of the approach to cost estimation and
the meaningful selection of the cost drivers. The a-posteriori evaluation results in high
quality estimations for the learning rate α and the cost drivers related to the ontology
evaluation and the requirements complexity. These are also among the more relevant
cost drivers. Provision of tool support for these two areas of ontology engineering may



thus be particularly effective to facilitate the ontology engineering process. The collec-
tion of data will continue towards a more accurate calibration of the model. In particu-
lar we intend to approach the suggestions received during the a-priori evaluation w.r.t.
a more differentiated size parameter and w.r.t. the support for ontology reuse activities
on the basis of a larger number of data points. In the near future we also plan to make
the results of our survey public and to provide a service which offers on-the-fly cost
estimations for ontology engineering processes based on the available data.
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