
Ontology Query Answering on Databases

Jing Mei1,2, Li Ma2, Yue Pan2

1 Department of Information Science
Peking University

Beijing 100871, China
{mayyam} @ is.pku.edu.cn
2 IBM China Research Lab

Beijing 100094, China
{malli, panyue} @ cn.ibm.com

Abstract. With the fast development of Semantic Web, more and more
RDF and OWL ontologies are created and shared. The effective man-
agement, such as storage, inference and query, of these ontologies on
databases gains increasing attention. This paper addresses ontology query
answering on databases by means of Datalog programs. Via epistemic
operators, integrity constraints are introduced, and used for conveying
semantic aspects of OWL that are not covered by Datalog-style rule lan-
guages. We believe such a processing suitable to capture ontologies in
the database flavor, while keeping reasoning tractable. Here, we present
a logically equivalent knowledge base whose (sound and complete) infer-
ence system appears as a Datalog program. As such, SPARQL query an-
swering on OWL ontologies could be solved in databases. Bi-directional
strategies, taking advantage of both forward and backward chaining, are
then studied to support this kind of customized Datalog programs, re-
turning exactly answers to the query within our logical framework.

1 Introduction

The Resource Description Framework (RDF) [25] has been recognized as a pop-
ular way to represent information in the Semantic Web, accompanying with a
standardized query language, SPARQL [27]. An important vocabulary extension
of RDF is the Web Ontology Language (OWL) [24], whose formalisms rely closely
on the Description Logic (DL) [2]. The Semantic Web Rule Language (SWRL)
[28] arises, when rules are considered to work with OWL in a syntactically and
semantically coherent manner.

Given an RDF document, having information of ontologies (i.e. upgraded to
an OWL document) even rules (i.e. further upgraded to a SWRL document), a
SPARQL query is to extract implicit and explicit RDF data, with query answer-
ing as an underlying reasoning service. Compared with weak DL query languages,
SPARQL is expressible for the union of conjunctive queries on RDF triples, not
only concerning traditional DL queries (e.g. instantiation, realization and re-
trieval [14]), but also allowing predicates (could be DL classes and properties)
being queried as variables.

Database (DB) technologies provide a solid support for various data-intensive
applications and could be used for ontology management. So, SPARQL queries
on ontologies possibly work in a similar way as SQL queries on relational data in
databases. Meanwhile, the intention of making the Semantic Web more accept-
able to the industry is another underlying promotion to impede the connection
to database communities [9]. However, relational DBs are not rich enough to
capture semantics implied in ontologies. Thus, Datalog is regarded as a suitable
intermedium, and the next section motivates this opinion in detail.

Technically, this paper generalizes a (negation-free) Datalog program P w.r.t.
a given DL KB Σ =< T ,A >, whose EDB (extensional database) consists of the
inferred DL TBox T ∗ and the original DL ABox A, and whose IDB (intensional
database) is composed of 7 inference rules devised by DL semantics. We state
that P is a syntax variant of an inference system Γ , and Γ is proved sound and
complete with a specified MKNF-DL [10] KB Σ′, where Σ′, assuming satisfi-
able, extends Σ with integrity constraints (ICs). By epistemic interpretations,
those ICs exactly reflect the semantic discrepancy between DL and DB, making
query answering in DL accessible to the DB community. As such, we elaborate
a strategy, which benefits from the tractable data complexity of Datalog, to ad-
dress popular SPARQL queries on databases, provided by RDF data obtained
from OWL documents. Within such a framework, it is possible to futher sup-
port SWRL rules which are user-defined Datalog rules sharing predicates with
the ontology classes and properties.

The paper is organized as follows. Section 2 is our motivation including an
analysis to encountered problems and existing approaches. Section 3 introduces
the preliminaries and notions used in this paper. In Section 4, a so-called DL2DB
KB Σ′ w.r.t. a given DL KB Σ is defined, along with a natural deduction sys-
tem Γ consisting of DL-driven inference rules. Also, the correspondence of Σ′ to
its original Σ, as well as the soundness and completeness of Γ with Σ′, are pre-
sented. A Datalog program, corresponding to Γ , is demonstrated in Section 5 for
query answering in Σ. There, we discuss computation strategies and evaluation
approaches as well. Section 6 envisions the desirable extension with user-defined
rules, and shows preliminary experiments in our prototype implementation. Fi-
nally, the conclusion is drawn in Section 7. (Readers can find more details on the
proofs in the paper at http://www.is.pku.edu.cn/~mayyam/appendix.pdf.)

2 Motivation

Our objective is to perform SPARQL query answering on databases which are
used to store RDF data (including OWL ontologies). However, it has been stud-
ied in DL-Lite [6] that data complexity of query answering in DL has a LOGSPACE

boundary, above which query answering is not expressible as a first-order logic
formula and hence a SQL query. However, most DLs are more expressive than
DL-Lite. The worst case is an unrestricted combination of OWL and rules, such
as SWRL, leading to the undecidability of interesting reasoning problems [28].
An EXPTIME complexity is reobtained, for query answering in a less expressive

extension to OWL with DL-safe rules [19], but the exponential data complexity
greatly weakens the efficiency.

The discrepancy between DL and DB is actually remarkable. As well-known,
DL is based on an open world assumption (OWA) permitting incomplete infor-
mation in an ABox, while DB adopts a closed world assumption (CWA) requir-
ing information always understood as complete. The unique name assumption
(UNA) is often emphasized in DB but not in DL. OWL Flight [9], furthermore,
clarifies restrictions in DL and constraints in DB, of which the former is to infer
and the latter to check. When negation comes, DBs prefer to “non-monotonic
negation”, while DLs rely on “monotonic negation”.

Facing to these open issues, various proposals have been presented. According
to the engines which do reasoning indeed, existing ontology persistent systems
can be roughly divided into two categories: DL-based and rule-based. The In-
stance Store [4] is a representative of DL-based systems, where DB serves mainly
for voluminous storage and convenient retrieval, and classical DL tableaux algo-
rithms help make implicit information explicit. In the Instance Store, whatever
queries are (particularly, those queries involving properties and variables can be
handled by rolling-up techniques [14]), a reduction to checking the KB unsatis-
fiability provides support for query answering. Rule-based approaches are a bit
different, which intuitively translate the meaning of DL constructors into rules.
Due to the expressive power of rules, those DL constructors (e.g. existential
restrictions) are either partially forbidden (as DLP [12] does) or assigned new
meanings (as OWL Flight [9] does). Unlike DL tableaux algorithms, the eval-
uation of queries adopts strategies by forward chaining or backward chaining.
More tractably, DL-lite [6] is proposed to execute the ABox using a SQL engine,
whose language itself is restrictive while keeping low complexity of reasoning,
namely polynomial in the size of instances in the knowledge base.

Since rule-based approaches are more extensible to SWRL, we make an at-
tempt to give inference rules as a translation of DL semantics, while RDF data
(from OWL documents) is stored in databases. Concentrating on query answer-
ing, this paper introduces a DL2DB deduction system Γ and studies which sub-
language of DLs is equivalent to the so-called DL2DB. Surely, DLP (Description
Logic Programs [12]) is a nice measure, as cited by most related work. However,
inspired by MKNF-DL (Description Logics of Minimal Knowledge and Negation
as Failure [10]), also motivated by bridging DL and DB, we exploit integrity
constraints to a DL KB Σ, resulting in a special MKNF-DL KB Σ′. Checking
satisfiability of (DB) integrity constraints has been well investigated (e.g. in [5]),
and our proposed ICs, in the DL setting, admit of CtD (respectively, ∃P.C) be-
ing known only if holding an autoepistemic belief of either C or D (respectively,
P and C). That is, we contribute Σ′ as a logically equivalent version of Σ in the
sense of query answering. Particularly, the DL2DB system Γ proves sound and
complete with Σ′ for non-epistemic queries. With a focus on query answering,
we assume both Σ and Σ′ are satisfiable. Generally speaking, it makes little
sense, in classical logics, when everything is possible to be entailed by inconsis-

tent KBs. Also, checking satisfiability of a DL KB or a MKNF-DL KB has been
studied in [2] and [10], but not scoped in this paper.

We remark this paper does not propose to “change” or “weaken” the seman-
tics of a DL KB. Instead, for keeping DL in classical first-order semantics, we
move to a MKNF-DL “world” whose unique epistemic model is identical to that
of DL, provided by integrity constraints on demand. In other words, we capture
an epistemic perception for those rule-based approaches, and gain an insight into
integrity constraints for DL constructors, rather than tying to change or weaken
the classical DL semantics.

On the other hand, we do realize nonmonotonic features are gaining increas-
ing interest in the context of the Semantic Web initiatives [26], and the paper
[8] provides a good survey. A latest work is [18], which proposes hybrid MKNF
KBs integrating decidable DLs with nonmonotonic rules. However, our paper
here belongs to the direction of research for query answering over ontologies re-
lying over database technologies by making use, in a “natural” way as a rational
agent does, of well established formalizations and computing mechanisms.

3 Preliminaries

Consider the main layers of the DL family bottom-up [2][13], ALC is a basic
and simple language, permitting class descriptions via C uD,C tD,¬C,∀P.C,
and ∃P.C, where C,D are classes and P is a property. Augmented by transitive
properties, ALC becomes ALCR+ , denoted by S in the following. SI is an exten-
sion to S with inverse properties, followed by SHI with property hierarchies. It
is called SHIF if extending by functional restrictions, SHIN if by cardinality
restrictions, and SHIQ if by qualified number restrictions. Support for datatype
predicates (e.g. string, integer) brings up the concrete domain of D, and using
nominals O helps construct classes with singleton sets.

With the expected pervasive use of OWL, SHIF(D) and SHOIN (D) are
paid more attention: one is the syntax variant to OWL Lite and the other is to
OWL DL. This paper currently takes SHI into account, and more expressive ex-
tensions will be explored in our ongoing work. Alternately, DB built-in features,
such as arithmetic operators and aggregate functions, might be considered as a
workaround for F ,N ,Q and D, while list operations for O. In the following, if
not stated otherwise, C,D denote SHI classes and P,Q denote SHI properties.

A DL KB Σ is defined as a pair Σ =< T ,A >. The TBox T is a finite set
of class and property subsumptions having the form of C v D and P v Q, resp.
The ABox A is a finite set of class and property assertions having the form of
C(a) and P (a, b). Also, an interpretation I = (∆, •I) consists of a nonempty set
∆ (the domain of I) and a function •I (the interpretation function of I) that
maps every class to a subset of ∆ and every property to a subset of ∆×∆. An
interpretation I is a model of a DL KB Σ (denoted as I |= Σ) iff every sentence
(subsumption or assertion) of Σ is satisfied in I. For a complete presentation of
other definitions, such as the satisfiability of sentences, we direct readers to the
classical DL handbook [2]. Query answering for q(x̄) in Σ attempts to receive

all ground substitutions t̄ to x̄ such that Σ |= q(t̄), and two KBs Σ and Σ′ are
equivalent in the sense of query answering iff those obtained results are identical
in both Σ and Σ′ [6].

Next, a more sophisticated language, namely MKNF-DL [10], is sketched.
One epistemic operator K works for minimal knowledge, and the other epistemic
operator A plays a role to default assumption. The syntax of MKNF-DL extends
DL with KC,KP,AC and AP , where C is a DL class and P is a DL property.
The semantics of MKNF-DL resorts to epistemic interpretations. An epistemic
interpretation is a triple (I,M,N) where I is a (first-order) interpretation and
M,N are sets of (first-order) interpretations. Non-epistemic classes and prop-
erties are interpreted same as in I, i.e. CI,M,N = CI and P I,M,N = P I . The
other semantic conditions state that:

>I,M,N = ∆; ⊥I,M,N = ∅; (¬C)I,M,N = ∆\CI,M,N ;

(C uD)I,M,N = CI,M,N ∩DI,M,N ; (C tD)I,M,N = CI,M,N ∪DI,M,N ;

(∃P.C)I,M,N = {a ∈ ∆|∃b.(a, b) ∈ P I,M,N and b ∈ CI,M,N };
(∀P.C)I,M,N = {a ∈ ∆|∀b.(a, b) ∈ P I,M,N implies b ∈ CI,M,N };
(KC)I,M,N =

T
J∈M(CJ ,M,N); (KP)I,M,N =

T
J∈M(PJ ,M,N);

(AC)I,M,N =
T
J∈N (CJ ,M,N); (AP)I,M,N =

T
J∈N (PJ ,M,N);

For any property Q being the inverse of P , if (a, b) ∈ P I,M,N then (b, a) ∈ QI,M,N ;

For any transitive property P , if (a, b), (b, c) ∈ P I,M,N then (a, c) ∈ P I,M,N .

A set of interpretationsM is an epistemic model for Σ (denoted asM |= Σ)
iff the structure (M,M) satisfies Σ and, for each set of interpretations M′, if
M ⊂ M′ then (M′,M) does not satisfy Σ. A structure (M,N) satisfies Σ
(denoted as (M,N) |= Σ) iff each interpretation I ∈ M is such that every sen-
tence (subsumption or assertion) of Σ is satisfied in the epistemic interpretation
(I,M,N). The paper of MKNF-DL [10] provides a complete presentation of
other definitions, such as the satisfiability of sentences, and we follow its con-
vention. Notice that, for any (non-epistemic) DL KB Σ, it has one and only one
epistemic model, i.e. the set of all first-order models for Σ, denoted as M(Σ).

Finally, this paper adopts assumptions that are suitable for the semantics of
MKNF (cf. [8][10][18]): (1) Every first-order interpretation is over the same fixed,
countably infinite domain; (2) There is a one-to-one correspondence between
individuals in the language and elements in the domain. Thus, the set of all
individuals O is fixed to I, i.e., ∆ = O, and we denote the interpretation of
a ∈ O simply as a itself, i.e., aI = a. The assumption of (2) also implies that
two distinct individuals denote two distinct elements, referred as to UNA.

4 Bridging DL and DB

Given a DL KB Σ, a specified MKNF-DL KB, namely the DL2DB KB Σ′,
is studied. We guarantee the equivalency of Σ′ and Σ in the sense of query
answering, for non-epistemic queries. And then, we generalize an inference sys-
tem, namely the DL2DB system Γ , and this contribution of Γ is posed by its
soundness and completeness with Σ′, building a bridge between DL and DB.

4.1 The DL2DB KB

Inspired by representing integrity constraints (ICs) in MKNF-DL [10], we pro-
pose ICs for some DL constructors to strengthen beliefs, meeting the requirement
that w.r.t. certain information the KB is prone to be complete.

Before introducing definitions, we recall how to formalize ICs using an ex-
ample from [10]. For instance, a TBox T : Kemployeev AmaletAfemale cor-
responds to an IC that “each known employee must be known to be either male
or female”. Having only one assertion in ABox A: employee(Bob), makes this
KB < T ,A > lack of epistemic models. That is, this IC is violated. Turning to a
system level, we require each known DL class of C tD must be known to be ei-
ther C or D, viz. sub1 as defined below, while sub2 is for ∃P.C. Considering the
discrepancy between DL and DB, we believe that ICs bridge them in a semantic
”pay-as-you-go” manner.

We use clos(C) for the closure of a class C, and clos(C) is the smallest set
containing C that is closed under subclasses and negation (in Negation Normal
Form), while the size of clos(C) is linear in the length of C [13]. Given a set
of classes M , clos(M) =

⋃
C∈M clos(C), the size of clos(M) is polynomial in

the size of M .

Definition 1. Let Σ =< T ,A > be a DL KB, and ΣC be the set of classes occurring
in Σ. A DL2DB KB w.r.t. Σ is Σ′ =< T ′,A > where T ′ = T ∪ sub1 ∪ sub2,
sub1={K(C tD) v AC tAD | C tD ∈ clos(ΣC)} and
sub2={K(∃P.C) v ∃AP.AC | ∃P.C ∈ clos(ΣC)}.

The following proposition helps gain insights into the nature of epistemic
models for Σ′ and Σ. Due to space limitation, the detailed proof can be found
at http://www.is.pku.edu.cn/~mayyam/appendix.pdf.

Proposition 1. Let Σ be a DL KB, and Σ′ be a DL2DB KB w.r.t. Σ. A set of
interpretationsM is an epistemic model for Σ′ iff (1)M is an epistemic model
for Σ; (2) for each subsumption ϕ ∈sub1∪sub2 in Σ′, (M,M) satisfies ϕ.

As pointed out above, the (non-epistemic) DL KB Σ has a unique epistemic
model, namelyM(Σ), consisting of all first-order models for Σ. This proposition
indicates that Σ′ has the same unique epistemic model asM(Σ) if the structure
(M(Σ),M(Σ)) satisfies all subsumptions in sub1∪sub2, otherwise Σ′ is unsat-
isfiable. Thus, under the assumption that both Σ and Σ′ are satisfiable, the two
KBs Σ and Σ′ are equivalent in the sense of query answering.

It possibly happens that Σ is satisfiable but Σ′ is not, which implies some
of those ICs have been violated. In this case, we fail to returning complete
answers to queries via Σ′, although incomplete information in Σ would not at-
tack Σ itself. For example, a DL KB Σ, having a TBox T : malevperson and
femalevperson in addition to an ABox A: maletfemale(Bob), is satisfiable
and entails person(Bob) but neither male(Bob) nor female(Bob). Obviously,
the IC of K(maletfemale)v AmaletAfemale is violated, making this Σ′ un-
satisfiable. In real DB-based applications, it is highly possible to have complete
information on Bob’s gender, which leads to person(Bob) in Σ′ and reobtaining
the satisfiability of Σ′.

4.2 The DL2DB System

DL TBox reasoning has been well-developed, but scalable DL ABox reasoning
deserves more investigation. Instead of using classical DL tableaux calculus, we
aim at exploiting an alternative way to ABox reasoning on databases, which are
initialized by an inferred TBox and an original ABox.

Since the complexity of deciding SHI DL class satisfiability is EXPTIME-
complete [13], computing the closure of the TBox is in coEXPTIME, provided that
C is subsumed by D iff Cu¬D is unsatisfiable [2]. Although, such computational
impact might be non-negligible, TBoxes are relatively fixed and certain data
preprocessing at the back end is feasible for applications, to some extent.

So far, a DL2DB system Γ w.r.t. a DL KB Σ =< T ,A > is constructed as
below. Starting by initialization, a TBox taxonomy T ∗ = {C v D|Σ |= (C v
D)} ∪ {P v Q|Σ |= (P v Q)}, derived from external DL reasoners, is uploaded
to Γ together with the original ABox A.
Initialization:
TBox: If ϕ ∈ T ∗, then ϕ ∈ Γ .
ABox: If ϕ ∈ A, then ϕ ∈ Γ .

Inference rules:
∈: If ϕ ∈ Γ , then Γ ` ϕ.
u: If Γ ` C(a) and Γ ` D(a), then Γ ` (C uD)(a).
∃: If Γ ` P (a, b) and Γ ` C(b), then Γ ` ∃P.C(a).
∀: If Γ ` P (a, b) and Γ ` ∀P.C(a), then Γ ` C(b).
vT : If Γ ` (C v D) and Γ ` C(a), then Γ ` D(a).
vP : If Γ ` (P v Q) and Γ ` P (a, b), then Γ ` Q(a, b).
Pi: If Γ ` P (a, b), then Γ ` Q(b, a), where Q is inverse of P .
Pt: If Γ ` P (a, b) and Γ ` P (b, c), then Γ ` P (a, c), where P is transitive.

Symbols of a, b, C, D, P,Q etc. will be instantiated by corresponding individ-
uals, classes and properties in Σ. Classical SHI DL [13] depicts another rule of
∀+: If Γ ` P (a, b) and Γ ` ∀Q.C(a), where P is transitive and Γ ` (P v Q), then
Γ ` ∀P.C(b). However, support for TBox reasoning gives ∀Q.C v ∀P.(∀P.C),
because of P v Q where P is transitive. As a result, Rule[∀] covers the situation
of Rule[∀+], i.e., if Γ ` P (a, b) and Γ ` ∀P.(∀P.C)(a), then Γ ` ∀P.C(b).

Applying these inference rules, a sentence ϕ is called derivable if Γ ` ϕ,
and its derivation length n counts in the times of applying inference rules. A
conflict is defined in Γ by the facts that Γ ` C(a) and Γ ` ¬C(a). In this paper,
conflict-free systems are focused, unless otherwise noted.

As far as we know, these above inference rules, more or less, play a role in
most “state of the art” Semantic Web reasoning engines, in particular for those
which adopt rule-based approaches. Thus, a corresponding KB fit in with this
Γ is expected, and Σ′ defined previously happens to be the candidate.

Theorem 1. Let Σ be a DL KB, Σ′ be a satisfiable DL2DB KB w.r.t. Σ, Γ be
a conflict-free DL2DB system w.r.t. Σ, and ϕ be a non-epistemic sentence.
Γ ` ϕ if and only if Σ′ |= ϕ.

For proofs of this theorem (or called as soundness and completeness), please
refer to the report at http://www.is.pku.edu.cn/~mayyam/appendix.pdf.

5 Query Answering

Moving the proposed DL2DB system into practice, a (negation-free) Datalog
program is presented in this section. Also, we discuss rewriting techniques which
make SPARQL queries processable, even those syntactic sugars involving pred-
icates as variables. By implementing a bi-directional strategy of top-down and
bottom-up, we believe that, following some optimization techniques, e.g. Magic
Set [3] and Tabling [1], scalable ontology query answering is hopeful.

5.1 SPARQL Queries

SPARQL is a query language for obtaining information from RDF graphs. An
RDF graph is a set of triples and each triple consists of a subject, a predicate
and an object. From DL perspective, a reserved predicate rdf:type, for ex-
ample, indicates DL class assertions with individuals as the subject and DL
classes as the object. Possibly, a SPARQL query concerns the retrieval of those
objects standing for DL classes, e.g. asking for all types of a specific individual.

Ignoring non-logical constitutions in SPARQL, such as filters, prefixes and so
on, we denote a SPARQL query q(x̄) by an expression of the form {x̄|dnf(x̄, ȳ)}.
Here, x̄ are the so-called distinguished variables that will be bound with individ-
uals in the KB, and ȳ are the non-distinguished variables which are existentially
qualified variables [6]. dnf(x̄, ȳ) is a disjunctive normal form of Rel(sub, pre, obj),
and Rel, being a logical predicate, has three parameters: sub, pre, obj, each of
which is either a constant in the RDF DB or a variable in x̄ or ȳ.

A question naturally arises, facing to “constants in the RDF DB”: what the
RDF DB is and what the constants are. Rewriting techniques are introduced to
address the problem. Given a DL KB, C(a) and P (a, b) in the ABox are rewrit-
ten by Rel(a, rdf:type, C) and Rel(a, P, b), while C v D and P v Q in the TBox
are rewritten by Rel(C, rdfs:subClassOf, D) and Rel(P , rdfs:subPropertyOf, Q),
where rdf:type, rdfs:subClassOf, and rdfs:subPropertyOf are reserved predicates.
Actually, rewriting not only provides support for SPARQL queries, but also
bridges DL and relational databases. DL constructive classes such as ∃P.C are
not straightforwardly expressible inside of DBs. So, we use unique IDs to make
them recognizable as for participating in sub, pre, obj. Thus, an RDF DB is a
storage of triples w.r.t. a DL KB, where constants are those IDs representing
individuals, DL classes and DL properties.

5.2 A Datalog Program

Rewriting techniques, additionally, give our inference rules a new version. For
instance, Rule[∃] is depicted as Rel(a, rdf:type, ∃P.C) ← Rel(a, P, b), Rel(b,
rdf:type, C). Attention should be paid for variable bindings of a, b, P, C, and
∃P.C, which impose semantic conditions into the rule body such that a, b are
individuals and ∃P.C is a pending DL class together with its affiliated DL prop-
erty P and class C. Other rules are processed similarly. For example, Rule[vT]
turns to Rel(a, rdf:type, D)← Rel(C, rdfs:subClassOf, D), Rel(a, rdf:type, C).

As such, given a DL KB Σ =< T ,A >, the DL2DB system Γ w.r.t. Σ
appears as a Datalog program P . The IDB of P consists of those inference rules
(except Rule[∈]) in Γ rewritten in triples. The EDB of P is exactly an RDF
DB w.r.t. Σ storing triples for the original ABox A and the inferred TBox T ∗,
driven by Rule[∈]. With the help of DL reasoners, we regard the computation
of TBoxes as a preprocessing. It is T ∗ instead of T that plays a role in this
program. Since Datalog has P-complete data complexity [7], query answering in
Γ is polynomial in size of the KB Σ∗ =< T ∗,A >.

Grounding a Datalog program P on the defined RDF DB needs k·NM binding
operations in maximum, where k,M and N are the number of Datalog rules,
variables and constants, resp. In the case of our DL2DB system Γ , we have k = 7
Datalog rules excluding Rule[∈], each of which has maximally M = 5 variables
acting as sub, pre, obj. The number N of constants counts those IDs representing
individuals, DL classes and DL properties in Σ. Consequently, interpreting Γ in
Datalog rules has a computational cost of O(7 · n5).

5.3 Strategies

Although, a theoretical complexity is tractable, the evaluation strategy in prac-
tice is another story. For example, a cyclic DL TBox of ∃P.C v C indicates the
query of C(x) is based on that of ∃P.C(x) which relies on C(y) and P (x, y).
The backward chaining becomes C(x)← P (x, y), C(y), getting entangled in the
recursive retrieval of C. Meanwhile, a pitfall exists when using forward chaining
freely in this example. Thinking about an ABox of P (a, a) and C(a), we receive
an infinite series of ∃P.C(a), ∃P.∃P.C(a), ∃P.∃P.∃P.C(a), and so on. A straight-
forward top-down implementation can take exponential time using these rules
while a bottom-up approach is faster (generally polynomial), but still wastes
time exploring other rules which are never used in the solution of the query [3].

To improve performance, we can use a procedure which collects subgoals
of a given query top-down firstly, and then evaluates all subgoals bottom-up.
Referring to techniques involved in Deductive Databases [21], the repetition of
computing is by all means avoided on the one hand, and the irrelevant goals may
as well be ignored on the other hand.

We are now ready to define algorithms, as shown in Table 1. To improve
legibility, Rule[*] is presented, where * is the placeholder of every inference rule
introduced in the DL2DB system, such as Rule[∃] and Rule[vT], except for
Rule[∈]. For computing the answers to a subgoal g over the KB Σ∗ =< T ∗,A >,
we first exploit the relational DB to obtain A(g) which means a ground base of
g asserted in A, and then answers are propagated until reaching a fixpoint.

In fact, this proposed strategy, to simulate top-down semantics in a bottom-
up framework, is not new, tracing back to the Magic Set [3] developed in De-
ductive Databases. Not providing a general magic set transformation, we regard
the collection of subgoals as a magic set s.t. Ruel[∃], for example, appears as
Rel(a, rdf:type, ∃P.C) ← Magic(∃P.C), Rel(a, P, b), Rel(b, rdf:type, C). Unless
required, such class expression ∃P...∃P.C as mentioned above would not be gen-
erated by the Rule[∃] with Magic.

Table 1. Algorithms of TopDown and BottomUp

Algorithm TopDown(q, T ∗) ButtomUp(S, T ∗,A)

A query q and A set S of subgoals for q and
Input an inferred TBox T ∗ an inferred TBox T ∗ and

an original ABox A
Output A set S of subgoals for q A set Ans of answers to subgoals in S

S := {q}; top := 0; Ans := {A(g)|g ∈ S}
while (top < sizeOf(S)) do do Ans′ := Ans

for each g in S do if an instantiated Rule[*] is settled
Steps if g matches the consequent with its antecedents in Ans′

of an instantiated Rule[*] then Ans′ := Ans′∪
then top := top + 1; S := S∪ {the consequent of Rule[*]}
{those antecedents of Rule[*]}; while Ans = Ans′;

return S return Ans

Meanwhile, there are various algorithms to address the termination of top-
down methods, most of which may be considered as variants of OLDT-resolution
[21]. Being a representative and used in XSB Prolog [1], the Tabling method
declares tabled predicates (manually or automatically) whose evaluation is by
means of a so-called SLG resolution, while non-tabled predicates are resolved as
normal, i.e., using the SLD resolution steps, by which the termination reaches
without infinite loops. However, complex and large DL TBoxes expect tabled
predicates declared automatically. Only to exploring all instantiated rules by a
‘compilation’ of the TBox, those predicates are detected. It means, a top-down-
like static analysis in Tabling looks similar to the collection of subgoals in our
approach. Besides, we observe that, in Tabling, the table entry associated with
calls to tabled predicates is enriched by inserting new derived answers, step
by step. Such a gradual insertion is executed also similarly in our bottom-up
computation for obtained subgoals. Briefly, running in our strategy seems not
more expensive than in Tabling, equipped with physical optimizations.

So far, we believe that a bi-directional strategy is suitable for query answer-
ing in a DL-driven Datalog program. Specifically, the (indirect) cyclic DL TBox
is legal which leads to the recursion unavoidable, while the superfluous computa-
tion (particularly encountering voluminous data in the Semantic Web) has been
cut down by the collection of subgoals. Finally, our bi-directional strategy will
terminate for a given DL KB, provided by the facts that

1. A finite number of subgoals is encountered, whose worst case is the collec-
tion of all DL classes and DL properties appearing in the KB, and

2. Each of these subgoals has a finite number of instances with the maximum
of all individuals in the KB.

5.4 Comparisons

In this section, we summarize and compare systems and approaches for rule-
based ontology query answering.

Knowledge compilation, making implicit information explicit in advance, has
been widely used in some systems. For example, OWLIM [15], being a semantic
repository, builds a materialized RDF database with the inferred closure of an
OWL DLP KB. Similarly, Minerva1 performs entailment rules bottom-up for the
DL ABox inferences, plugged with a DL reasoner for precomputing the DL TBox
subsumptions [16][29]. Creating DB views has been preprocessed in DLDB-OWL
[20], of which each view stands for a DL class. Briefly, this kind of tools fills in
DBs with data by a bottom-up precompilation, pushing a direct retrieval to
back-end databases, but at the risk of a whole re-computation when updating.

Querying on-the-fly during reasoning alleviates the suffering caused by up-
dating. There are two frameworks, KAON2 [19] and DL-lite [6], getting deserved
attention. KAON2 reduces a DL KB to a disjunctive Datalog program, using
the magic set algorithm developed for disjunctive programs. DL-lite is less ex-
pressive, although, any query is expressible as the union of conjunctive queries
in SQL via a KB normalization, making SQL engines responsible to return the
exact answers. Thus, our DL2DB stands in the middle of KAON2 and DL-lite.
Generally speaking, this kind of tools follows a solid logical language, to address
the challenges of expressivity and reasoning power.

It leaves a straightforward way, in which existing (top-down, bottom-up) rule
engines are borrowed as a whole. In this trend, a production rule engine Jess
is used by OWLJessKB2 and OWL2Jess [17], while XSB Prolog is preferred in
FLORA-23 and TRIPLE4. Also, SWI-Prolog5 provides a Semantic Web Library
dealing with the RDF data extracted from RDF(S) and OWL documents. Taking
negation into account, deduction in ontologies via ASP (Answer Set Program-
ming) has been discussed in [23] but regarding classical negation ¬ as default
not, and HEX-Programs [11] provide a hybrid platform integrating ASP rules
with external DL atoms, both of which utilize underlying ASP rule engines.

6 Discussions

Not surprising, user-defined rules are expected in real applications. Viewing
those inference rules in a system level, we envision a common platform with
support for SPARQL query answering in SWRL. Learning from our preliminary
experiments, performance problems (e.g. running time and memory space) are
discussed below, towards the development of a powerful Semantic Web tool.

6.1 Extensions

SWRL [28] is a combination of OWL DL and unary/binary Datalog rules. Tech-
nically, let S be a SWRL knowledge base, where OC is a set of OWL classes,
1 http://www.alphaworks.ibm.com/tech/semanticstk
2 http://edge.cs.drexel.edu/assemblies/software/owljesskb/
3 http://flora.sourceforge.net/
4 http://triple.semanticweb.org/
5 http://www.swi-prolog.org/

OP is a set of OWL properties, and ST is a set of OWL individuals and SWRL
variables. A SWRL rule has the form: h1 ∧ · · · ∧ hn ← b1 ∧ · · · ∧ bm , where
hi, bj , 1 ≤ i ≤ n, 1 ≤ j ≤ m are atoms of the form C(t) with C ∈ OC and t ∈ ST ,
or atoms of the form P (t1, t2) with P ∈ OP and t1, t2 ∈ ST .

We are more interested in SWRL rules with a unique head atom, and rewrit-
ing techniques are still suitable s.t. each SWRL rule appears as: Rel(s0, p0, o0)←
Rel(s1, p1, o1) · · · Rel(sn, pn, on). Facing to a rule body having Rel(a, rdf:type,
∃P.C), for instance, a rewritten version of Rule[∃] as mentioned above is applied
to obtain corresponding entailments, also Rule[vT] and others are applicable.
Thus, assuming that a Datalog program works for our DL2DB system, the situ-
ation is not aggravated when more rules, in the same style, are involved. Being
a preliminary work, our prototype is towards support for query answering with
SWRL rules, whose semantics appeals, however, for integrity constraints.

A large variety of features have been captured in MKNF-DL [10], such as
default rules and epistemic queries. Our future work includes a more general
formalization concerning non-monotonic logics and latest work in [8] [11] [18] is
well deserved studying.

6.2 Preliminary Experiments

We conducted initial experiments on a DBMS-based OWL repository, Minerva
(DB2 in experiments). Test data sets are from the extended LUBM [16], an
OWL ontology including 69 atomic classes, 39 intersection classes, 10 existential
restrictions, 55 properties, 263 class subsumptions, 16 property subsumptions,
46450 class assertions, 239933 property assertions, and 25461 individuals. These
documents involve one terminology file of size 66 KB, one university file of size
207 KB and twenty department files each of which is about 1300 KB.

Not tangling with complex DL class descriptions, such queries as finding
instances typed of “Organization” receive answers (counting to 229 none of which
is asserted in the ABox) in 0.91 second. However, the query to “Chair”, defined
as Person u ∃ headOf.Department where DepartmentvOrganization, requires
the evaluation of “Person” firstly. There are 35 classes being recognized as the
subclasses of “Person”, inducing totally 90 subgoals. Finally, it counts to 14995
persons (none exists in the ABox) and 40 chairs (half asserted, half inferred)
in 29.73 second. As for a certain individual, who is asserted as “Man” and
“FullProfessor” in the ABox, our engine further knows him typed of “Professor”,
“Faculty”, “Employee”, “Person” and “Chair” in 21.48 second.

We found that how to process intermediate results obtained from subgoals
becomes a bottleneck of performance, and the worse case reports “out of mem-
ory” if temporary results are carried out in memory. Inserting them into DBs
is considered, but it takes minutes since various indexes need to be established
and DB needs to write logs. Thus, we turn to declared global temporary tables
(without logging in DB2), in which inferred results are cached. At running time,
top-down and bottom-up procedures proceed, followed by inserting intermedi-
ate answers into temporary tables active in a session. SQL engines serve for the
final retrieval, concerning unions of conjunction queries on arbitral RDF triples,

from temporary tables (filled by inferred results) together with other physical
DB tables.

7 Conclusions

On the Semantic Web, SPARQL is for query answering in the RDF community.
An OWL ontology is RDF-based, adopting DL as its logical foundation. Given a
DL KB Σ, by introducing integrity constraints inspired by MKNF-DL [10], we
present its logically equivalent version, namely the DL2DB KB Σ′, in the sense
of query answering. Meanwhile, an inference system, the DL2DB system Γ w.r.t.
Σ, takes effect, while preserving sound and complete with Σ′ for non-epistemic
queries. The appearance of a Datalog program moves Γ into practice, getting
SPARQL queries solved.

Our proposal, to some extent, is not beyond DLP, where DLP has syntactical
expressive restrictions while DL2DB has semantical integrity constraints. We still
believe this paper, in an epistemic perspective, generalizes those using rules to
perform OWL reasoning. As a preliminary implementation, an engine, coupled
with a scalable OWL storage (e.g. Minerva [29] but not committing its ABox
inferences), is developed. Answers to SPARQL queries are received in seconds
on a data set of a medium size. A better performance is expected by using
more optimization techniques from existing Datalog engines (e.g. [21]) and other
Semantic Web applications (e.g. [22]).

References

1. The XSB System Version 2.7.1 Volume 1: Programmer’s Manual.
2. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter

Patel-Schneider. The Description Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 2003.

3. François Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D. Ullman. Magic
Sets and Other Strange Ways to Implement Logic Programs. In Proceedings of the
5th ACM Symposium on Principles of Database Systems, pages 1–15, 1986.

4. Sean Bechhofer, Ian Horrocks, and Daniele Turi. The OWL Instance Store: System
Description. In Proceedings of CADE-20, LNCS 3632, pages 177–181, 2005.

5. Francois Bry, Norbert Eisinger, Heribert Schutz, and Sunna Torge. SIC: Satisfi-
ability Checking for Integrity Constraints. In Proceeding of Deductive Databases
and Logic Programming, pages 25–36, 1998.

6. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. DL-Lite: Tractable Description Logics for Ontologies. In
Proc. of the 20th Nat. Conf. on Artificial Intelligence, pages 602–607, 2005.

7. Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Complexity
and Expressive Power of Logic Programming. ACM Computing Surveys, 33(3):374–
425, 2001.

8. Jos de Bruijn, Thomas Eiter, Axel Polleres, and Hans Tompits. On Representa-
tional Issues About Combinations of Classical Theories with Nonmonotonic Rules.
In Proceedings of KSEM, LNCS 4092, pages 1–22, 2006.

9. Jos de Bruijn, Axel Polleres, Rubén Lara, and Dieter Fensel. OWL DL vs. OWL
Flight: Conceptual Modeling and Reasoning on the Semantic Web. In Proceedings
of the 14th International World Wide Web Conference, Chiba, Japan, 2005. ACM.

10. Francesco M. Donini, Daniele Nardi, and Riccardo Rosati. Description Logics of
Minimal Knowledge and Negation as Failure. ACM Transactions on Computational
Logic, 3(2):177–225, 2002.

11. Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits. Ef-
fective Integration of Declarative Rules with External Evaluations for Semantic-
Web Reasoning. In Proceedings of ESWC, LNCS 4011, pages 273–287, 2006.

12. Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. Description
Logic Programs: Combining Logic Programs with Description Logic. In Proceedings
of the 12th International World Wide Web Conference, pages 48–57. ACM, 2003.

13. Ian Horrocks, Ulrike Sattler, and Stephan Tobies. A Description Logic with Tran-
sitive and Converse Roles, Role Hierarchies and Qualifying Number Restrictions.
LTCS-Report 99-08, RWTH Aachen, Germany, 1999.

14. Ian Horrocks and Sergio Tessaris. Querying the Semantic Web: a Formal Approach.
In Proceedings of ISWC, LNCS 2342, pages 177–191, 2002.

15. Atanas Kiryakov, Damyan Ognyanov, and Dimitar Manov. OWLIM: A Pragmatic
Semantic Repository for OWL. In Proceeding of International Workshop on WISE,
LNCS 3807, pages 182–192, 2005.

16. Li Ma, Yang Yang, Zhaomin Qiu, Guotong Xie, Yue Pan, and ShengPing Liu.
Towards A Complete OWL Ontology Benchmark. In Proceedings of ESWC, LNCS
4011, pages 124–139, 2006.

17. Jing Mei, Elena Paslaru Bontas, and Zuoquan Lin. OWL2Jess: A Transformational
Implementation of the OWL Semantics. In Proceedings of International Workshops
on ISPA, LNCS 3759, pages 599–608, 2005.

18. Boris Motik and Riccardo Rosati. Closing Semantic Web Ontologies. Technical
report, University of Karlsruhe, May 2006. http://kaon2.semanticweb.org/.

19. Boris Motik, Ulrike Sattler, and Rudi Studer. Query Answering for OWL-DL with
Rules. Journal of Web Semantics, 3(1):41–60, 2005.

20. Zhengxiang Pan and Jeff Heflin. DLDB: Extending Relational Databases to Sup-
port Semantic Web Queries. In Practical and Scalable Semantic Systems, 2003.

21. Kotagiri Ramamohanarao and James Harland. An introduction to deductive
database languages and systems. The VLDB Journal, 3(2):107–122, 1994.

22. Edna Ruckhaus, Eduardo Ruiz, and Maria-Esther Vidal. Query Evaluation and
Optimization in the Semantic Web. In Proc. of ALPSWS, 2006.

23. Terrance Swift. Deduction in Ontologies via ASP. In Proceedings of Logic Pro-
gramming and Nonmonotonic Reasoning, LNCS 2923, 2004.

24. W3C. OWL: Web Ontology Language. http://www.w3.org/TR/owl-absyn/.
25. W3C. Resource Description Framework (RDF): Concepts and Abstract Syntax.

http://www.w3.org/TR/rdf-concepts/.
26. W3C. Rule Interchange Format WG. http://www.w3.org/2005/rules/wg.
27. W3C. SPARQL Query Language. http://www.w3.org/TR/rdf-sparql-query/.
28. W3C. SWRL: A Semantic Web Rule Language Combining OWL and RuleML.

http://www.w3.org/Submission/SWRL/.
29. Jian Zhou, Li Ma, Qiaoling Liu, Lei Zhang, Yong Yu, and Yue Pan. Minerva: A

Scalable OWL Ontology Storage and Inference System. In Proceedings of Asia
Semantic Web Conference, To appear, 2006.

