
Web Service Composition via Generic
Procedures and Customizing User Preferences

Shirin Sohrabi, Nataliya Prokoshyna, and Sheila A. McIlraith

Department of Computer Science, University of Toronto, Toronto, Canada,
{shirin,nataliya,sheila}@cs.toronto.edu

Abstract. We claim that a key component of effective Web service com-
position, and one that has largely been ignored, is the consideration of
user preferences. In this paper we propose a means of specifying and
intergrating user preferences into Web service composition. To this end,
we propose a means of performing automated Web service composition
by exploiting generic procedures together with rich qualitative user pref-
erences. We exploit the agent programming language Golog to represent
our generic procedures and a first-order preference language to repre-
sent rich qualitative temporal user preferences. From these we generate
Web service compositions that realize the generic procedure, satisfying
the user’s hard constraints and optimizing for the user’s preferences. We
prove our approach sound and optimal. Our system, GologPref, is im-
plemented and interacting with services on the Web. The language and
techniques proposed in this paper can be integrated into a variety of
approaches to Web or Grid service composition.

1 Introduction

Web services provide a standardized means for diverse, distributed software ap-
plications to be published on the Web and to interoperate seamlessly. Simple Web
accessible programs are described using machine-processable descriptions and
can be loosely composed together to achieve complex behaviour. The weather ser-
vice at www.weather.com and the flight-booking services at www.aircanada.ca,
are examples of Web applications that can be described and composed as Web
services. They might be coupled as part of a travel-booking service, for example.

Automated Web service composition is one of many interesting challenges
facing the Semantic Web. Given computer-interpretable descriptions of: the task
to be performed, the properties and capabilities of available Web Services, and
possibly some information about the client or user’s specific constraints, auto-
mated Web service composition requires a computer program to automatically
select, integrate and invoke multiple Web services in order to achieve the speci-
fied task in accordance with any user-specific constraints. Compositions of Web
or Grid services are necessary for realizing both routine and complex tasks on
the Web (resp. Grid) without the need for time-consuming manual composition
and integration of information. Compositions are also a useful way of enforcing
business rules and policies in both Web and Grid computing.

2

Fully automated Web service composition has been characterized as akin to
both an artificial intelligence (AI) planning task and to a restricted software syn-
thesis task (e.g., [1]). A composition can be achieved using classical AI planning
techniques by conceiving services as primitive or complex actions and the task
description specified as a (final state) goal (e.g., [2, 3]). This approach has its
drawbacks when dealing with data. In general, the search space for a composition
(aka plan) is huge because of the large number of available actions (services),
which grow far larger still with grounding for data.

A reasonable middle ground which we originally proposed in [4, 1] is to use
generic procedures to specify the task to be performed and to customize these
procedures with user constraints. We argued that many of the tasks performed on
the Web or on intranets are repeated routinely, and the basic steps to achieving
these tasks are well understood, at least at an abstract level – travel planning
is one such example. Nevertheless, the realization of such tasks varies as it is
tailored to individual users. As such, our proposal was to specify such tasks
using a a workflow or generic procedure and to customize the procedure with user
constraints at run time. Such an approach is generally of the same complexity as
planning but the search space is greatly reduced, and as such significantly more
efficient than planning without such generic advice.

In [1] we proposed to use an augmented version of the agent programming
language Golog [5] to specify our generic procedures or workflows with sufficient
nondeterminism to allow for customization. (E.g., “book inter-city transporta-
tion, local transportation and accommodations in any order”). User constraints
(e.g., “I want to fly with Air Canada.”) were limited to hard constraints (as
opposed to “soft”), were specified in first-order logic (FOL), and were applied to
the generic procedure at run-time to generate a user-specific composition of ser-
vices. A similar approach was adopted using hierarchical task networks (HTNs)
to represent generic procedures or templates, and realized using SHOP2 (e.g.,
[6]) without user customization of the procedures.

In this paper, we extend our Golog framework for Web service composition,
customizing Golog generic procedures not only with hard constraints but with
soft user constraints (henceforth referred to as preferences). These preferences are
defeasible and may not be mutually achievable. We argue that user preferences
are a critical and missing component of most existing approaches to Web service
composition. User preferences are key for at least two reasons. First, the user’s
task (specified as a goal and/or generic procedure with user constraints) is often
under constrained. As such, it induces a family of solutions. User preferences
enable a user to specify properties of solutions that make them more or less
desirable. The composition system can use these to generate preferred solutions.

A second reason why user preferences are critical to Web service composition
is with respect to how the composition is performed. A key component of Web
service composition is the selection of specific services used to realize the com-
position. In AI planning, primitive actions (the analogue of services) are selected
for composition based on their preconditions and effects, and there is often only
one primitive action that realizes a particular effect. Like actions, services are

3

selected for composition based on functional properties such as inputs, output,
preconditions and effects, but they are also selected based on domain-specific
nonfunctional properties such as, in the case of airline booking, whether they
book flights with a carrier the user prefers, what credit cards they accept, how
trusted they are, etc. By integrating user preferences into Web service com-
position, preferences over services can be specified and considered along side
preferences for the solutions.

In this paper we recast the problem of Web service composition as the task of
finding a composition of services that achieves the task description (specified as
a generic procedure in Golog), that achieves the user’s hard constraints, and that
is optimal with respect to the user’s preferences. To specify user preferences, we
exploit a rich qualitative preference language, recently proposed by the authors
to specify users’ preferences in a variant of linear temporal logic (LTL) [7]. We
prove the soundness of our approach and the optimality of our compositions with
respect to the user’s preferences. Our system can be used to select the optimal
solution from among families of solutions that achieve the user’s stated objective.
Our system is implemented in Prolog and integrated with a selection of scraped
Web services that are appropriate to our test domain of travel planning.

The work presented here is cast in terms of FOL, not in terms of one of the
typical semantic Web languages such as OWL [8] nor more specifically in terms
of a semantic Web service ontology such as OWL-S [9], WSMO [10] or SWSO
[11]. Nevertheless, it is of direct significance to semantic Web services. As noted
in (e.g., [9]) process models, necessary for Web service composition, cannot be
expressed in OWL while preserving all and only the intended interpretations
of the process model. OWL (and thus OWL-S) is not sufficiently expressive.
Further OWL reasoners are not designed for the type of inference necessary for
Web service composition. As such, Web service composition systems generally
translate OWL and OWL-S representations into internal representations such
as PDDL that are more amenable to AI planning (e.g., [6, 12]). Golog served as
one of the inspirations for what is now OWL-S [4] and all the OWL-S constructs
have translations into Golog [13]. Further, the semantics of the OWL-S process
model has been specified in situation calculus [11, 14]. Thus, our Golog generic
procedures can be expressed in OWL-S and likewise, OWL-S ontologies can be
translated into our formalism. We do not have a current implementation of this
translation, but it is conceptually straightforward.

2 Situation Calculus and Golog

We use the situation calculus and FOL to describe the functional and nonfunc-
tional properties of our Web services. We use the agent programming language
Golog to specify composite Web services and to specify our generic procedures.
In this section, we review the essentials of situation calculus and Golog.

The situation calculus is a logical language for specifying and reasoning about
dynamical systems [5]. In the situation calculus, the state of the world is ex-
pressed in terms of functions and relations (fluents) relativized to a particular
situation s, e.g., F (x, s). In this paper, we distinguish between the set of fluent

4

predicates, F , and the set of non-fluent predicates, R, representing properties
that do not change over time. A situation s is a history of the primitive ac-
tions, a ∈ A, performed from a distinguished initial situation S0. The function
do(a, s) maps a situation and an action into a new situation thus inducing a tree
of situations rooted in S0. The macro Poss(a,s) is true if action a is possible in
situation s.

Web services such as the Web exposed application at www.weather.com are
viewed as actions in the situation calculus and are described as actions in terms
of a situation calculus basic action theory, D. The details of D are not essential
to this paper but the interested reader is directed to [5, 14, 1] for further details.

Golog [5] is a high-level logic programming language for the specification and
execution of complex actions in dynamical domains. It builds on top of the situ-
ation calculus by providing Algol-inspired extralogical constructs for assembling
primitive situation calculus actions into complex actions (programs) δ. These
complex actions simply serve as constraints upon the situation tree. Complex
action constructs include the following:

a — primitive actions if φ then δ1 else δ2 – conditionals
δ1; δ2 — sequences δ1|δ2 — nondeterministic cho ice of actions
φ? — tests π(x)δ — nondeterministic choice of arguments
while φ do δ — while loops proc P (v) δ endProc — procedure

We also include the construct anyorder[δ1, . . . , δn] which allows any permuta-
tion of the actions listed. The conditional and while-loop constructs are defined
in terms of other constructs. For the purposes of Web service composition we
generally treat iteration as finitely bounded by a parameter k. Such finitely
bounded programs are called tree programs.

if φ then δ1 else δ2
def
= [φ?; δ1] | [¬φ?; δ2]

while1(φ) δ
def
= if φ then δ endIf 1

whilek(φ) δ
def
= if φ then [δ; while k−1(φ)δ] endIf

These constructs can be used to write programs in the language of the domain
theory, or more specifically, they can be used to specify both composite Web
services and also generic procedures for Web service composition. E.g.2,

bookAirTicket(x) ; if far then bookCar(y) else bookTaxi(y) endIf

bookCar(x) ; bookHotel(y).

In order to understand how we modify Golog to incorporate user preferences,
the reader must understand the basics of Golog semantics. There are two popular
semantics for Golog programs: the original evaluation semantics [5] and a related
single-step transition semantics that was proposed for on-line execution of con-
current Golog programs [15]. The transition semantics is axiomatized through
two predicates Trans(δ, s, δ′, s′) and Final(δ, s). Given an action theory D, a

1 if-then-endIf is the obvious variant of if-then-else- endIf.
2 Following convention we will generally refer to fluents in situation-suppressed form,

e.g., at(toronto) rather than at(toronto, s). Reintroduction of the situation term is
denoted by [s]. Variables are universally quantified unless otherwise noted.

5

program δ and a situation s, Trans defines the set of possible successor configu-
rations (δ′, s′) according to the action theory. Final defines whether a program
successfully terminated, in a given situation. Trans and Final are defined for
every complex action. A few examples follow. (See [15] for details):

Trans(nil, s, δ′, s′) ≡ False

Trans(a, s, δ′, s′) ≡ Poss(a[s], s) ∧ δ′ = nil ∧ s′ = do(a[s], s)

Trans(φ?, s, δ′, s′) ≡ φ[s] ∧ δ′ = nil ∧ s′ = s

Trans([δ1; δ2], s, δ
′, s′) ≡ Final(δ1, s) ∧ Trans(δ2, s, δ

′, s′)

∨ ∃δ′′.δ′ = (δ′′; δ2) ∧ Trans(δ1, s, δ
′′, s′)

Trans([δ1 | δ2], s, δ
′, s′) ≡ Trans(δ1, s, δ

′, s′) ∨ Trans(δ2, s, δ
′, s′)

Trans(π(x)δ, s, δ′, s′) ≡ ∃x.Trans(δv
x, s, δ′, s′)

Final(nil, s) ≡ TRUE Final(a, s) ≡ FALSE

Final([δ1; δ2], s) ≡ Final(δ1, s) ∧ Final(δ2, s)

Thus, given the program bookCar(x); bookHotel(y), if the action bookCar(x)

is possible in situation s, then
Trans([bookCar(x); bookHotel(y)], s, bookHotel(y), do(bookCar(x), s))

describes the only possible transition according to the action theory. do(bookCar(x), s)

is the transition and bookHotel(y) is the remaining program to be executed. Us-
ing the transitive closure of Trans, denoted Trans∗, one can define a Do predicate
as follows. This Do is equivalent to the original evaluation semantics Do [15].

Do(δ, s, s′)
def
= ∃δ′.Trans∗(δ, s, δ′, s′) ∧ Final(δ′, s′). (1)

Given a domain theory, D and Golog program δ, program execution must
find a sequence of actions a (where a is a vector of actions) such that: D |=
Do(δ, S0, do(a, S0)). Do(δ, S0, do(a, S0)) denotes that the Golog program δ, start-
ing execution in S0 will legally terminate in situation do(a, S0), where do(a, S0)

abbreviates do(an, do(an−1, . . . , do(a1, S0))). Thus, given a generic procedure, de-
scribed as a Golog program δ, and an initial situation S0, we would like to infer
a terminating situation do(a, S0) such that the vector a denotes a sequence of
Web services that can be performed to realize the generic procedure.

3 Specifying User Preferences

In this section, we describe the syntax of the first-order language we use for
specifying user preferences. This description follows the language we proposed
in [7] for preference-based planning. The semantics of the language is described
in the situation calculus. We provide an informal description here, directing
the reader to [7] for further details. Our language is richly expressive, enabling
the expression of static as well as temporal preferences. Unlike many preference
languages, it provides a total order on preferences. It is qualitative in nature,
facilitating elicitation. Unlike many ordinal preference languages, our language
provides a facility to stipulate the relative strength of preferences.

Illustrative example: To help illustrate our preference language, consider the
task of travel planning. A generic procedure, easily specified in Golog, might say:

6

In any order, book inter-city transportation, book local accommodations and book
local transportation. With this generic procedure in hand an individual user can
specify their hard constraints (e.g., Lara needs to be in Chicago July 29-Aug 5,
2006.) together with a list of preferences described in the language to follow.

To understand the preference language, consider the composition we are try-
ing to generate to be a situation – a sequence of actions or Web services executed
from the initial situation. A user specifies his or her preferences in terms of a
single, so-called General Preference Formula. This formula is an aggregation of
preferences over constituent properties of situations (i.e., compositions). The
basic building block of our preference formula is a Basic Desire Formula which
describes properties of (partial) situations (i.e., compositions).
Definition 1 (Basic Desire Formula (BDF)). A basic desire formula is a

sentence drawn from the smallest set B where:

1. F ⊂ B
2. R ⊂ B
3. f ∈ F , then final(f) ∈ B
4. If a ∈ A, then occ(a) ∈ B
5. If ϕ1 and ϕ2 are in B, then so are ¬ϕ1, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, (∃x)ϕ1, (∀x)ϕ1,

next(ϕ1), always(ϕ1), eventually(ϕ1), and until(ϕ1, ϕ2).

final(f) states that fluent f holds in the final situation, occ(a) states that action
a occurs in the present situation, and next(ϕ1), always(ϕ1), eventually(ϕ1), and

until(ϕ1, ϕ2) are basic LTL constructs
BDFs establish properties of preferred situations (i.e., compositions of ser-

vices). By combining BDFs using boolean connectives we are able to express a
wide variety of properties of situations. E.g.3

final(at(home)) (P1)

(∃ C).occ′(bookAir(C, economy, direct)) ∧member(C, starAlliance) (P2)

always(¬((∃ H).hotelBooked(H) ∧Hilton(H))) (P3)

(∃ H, R).(occ′(bookHotel(H, R)) ∧ paymentOption(H, visa)

∧ starsGE(R, 3) (P4)

P1 says that in the final situation Lara prefers to be at home. P2 says that
Lara prefers to eventually book direct economy air travel with a Star Alliance
carrier. Recall there was no stipulation in the generic procedure regarding the
mode of transportation between cities or locally. P3 expresses the preference
that a Hilton hotel never be booked while P4 expresses a preference for hotels
that accept visa credit cards and have a rating of 3 stars or more.

To define a preference ordering over alternative properties of situations, we
define Atomic Preference Formulae (APFs). Each alternative being ordered com-
prises 2 component: the property of the situation, specified by a BDF, and a value
term which stipulates the relative strength of the preference.

3 To simplify the examples many parameters have been suppressed. For legibility,
variables are upper case, we abbreviate eventually(occ(ϕ)) by occ′(ϕ), and we
refer to the preference formulae by their labels.

7

Definition 2 (Atomic Preference Formula (APF)).
Let V be a totally ordered set with minimal element vmin and maximal element vmax.

An atomic preference formula is a formula ϕ0[v0] � ϕ1[v1] � ... � ϕn[vn], where each

ϕi is a BDF, each vi ∈ V, vi < vj for i < j, and v0 = vmin. When n = 0, atomic

preference formulae correspond to BDFs.

An APF expresses a preference over alternatives. In what follows, we let V =
[0, 1], but we could instead choose a strictly qualitative set like {best < good <
indifferent < bad < worst} since the operations on these values are limited to
max and min. The following APFs express an ordering over Lara’s preferences.

P2[0]

� (∃ C, W).occ′(bookAir(C, economy, W) ∧member(C, starAlliance)[0.2]

� occ′(bookAir(delta, economy, direct))[0.5] (P5)

(∃ T).occ′(bookCar(national, T))[0] � (∃ T).occ′(bookCar(alamo, T))[0.2]

� (∃ T).occ′(bookCar(avis, T))[0.8] (P6)

(∃ C).occ′(bookCar(C, suv))[0] � (∃ C).occ′(bookCar(C, compact))[0.2] (P7)

P5 states that Lara prefers direct economy flights with a Star Alliance car-
rier, followed by economy flights with a Star Alliance carrier, followed by direct
economy flights with Delta airlines. P6 and P7 are preference over cars. Lara
strongly prefers National and then Alamo over Avis, followed by any other car-
rental companies. Finally she slightly prefers an SUV over a compact with any
other type of car a distant third.

To allow the user to specify more complex preferences and to aggregate prefer-
ences, General Preference Formulae (GFPs) extends our language to conditional,
conjunctive, and disjunctive preferences.

Definition 3 (General Preference Formula (GPF)).
A formula Φ is a general preference formula if one of the following holds:

• Φ is an APF

• Φ is γ : Ψ , where γ is a BDF and Ψ is a GPF [Conditional]

• Φ is one of

- Ψ0 & Ψ1 & ... & Ψn [General Conjunction]

- Ψ0 | Ψ1 | ... | Ψn [General Disjunction]

where n ≥ 1 and each Ψi is a GPF.

Continuing our example:
(∀ H, C, E, W).always(¬hotelBooked(H) : ¬occ′(bookAir(C, E, W))) (P8)

far : P5 (P9)

P3& P4& P6& P7& P8& P9 (P10)

P8 states that Lara prefers not to book her air ticket until she has a hotel
reservation. P9 conditions Lara’s airline preferences on her destination being far
away. (If it is not, she will not fly and the preferences are not relevant.) Finally,
P10 aggregates previous preferences into one formula.

Semantics: Informally, the semantics of our preference language is achieved
through assigning a weight to a situation s with respect to a GPF, Φ, written

8

ws(Φ). This weight is a composition of its constituents. For BDFs, a situation
s is assigned the value vmin if the BDF is satisfied in s, vmax otherwise. Recall
that in our example above vmin = 0 and vmax = 1, though they could equally
well have been a qualitative e.g., [excellent, abysmal]. Similarly, given an APF,
and a situation s, s is assigned the weight of the best BDF that it satisfies
within the defined APF. Returning to our example above, for P6 if a situation
(composition) booked a car from Alamo rental car, it would get a weight of 0.2.
Finally GPF semantics follow the natural semantics of boolean connectives. As
such General Conjunction yields the minimum of its constituent GPF weights
and General Disjunction yields the maximum of its constituent GPF weights.
For a full explanation of the situation calculus semantics, please see [7]. Here
we also define further aggregations that can be performed. These are mostly
syntactic sugar that are compelling to the user and we omit them for space.

We conclude this section with the following definition which shows us how
to compare two situations (and thus two compositions) with respect to a GPF:

Definition 4 (Preferred Situations). A situation s1 is at least as preferred as

a situation s2 with respect to a GPF Φ, written pref(s1, s2, Φ) if ws1(Φ) ≤ ws2(Φ).

4 Web Service Composition

In this section, we formally define the notion of Web Service Composition with
generic procedures and customizing user preferences and prove properties of
our characterization, but first we define Web Service Composition without user
preferences. Our definition relies on the definition of Do from (1) in Section 2.

Definition 5 (Web Service Composition (WSC)).
A WSC problem is described as a 4-tuple (D, O, δ, C) where:

• D is a situation calculus basic action theory describing functional properties of the
Web services,
• O is a FOL theory describing the non-functional properties of the Web services4,
• δ is a generic procedure described in Golog, and
• C is a formula expressing hard user constraints.
WSC determines a sequence of Web services a such that

D ∧O |= ∃s.Do(δ, S0, s) ∧ s = do(a, S0) ∧ C(s)

A Web service composition computed using generic procedures and customiz-
ing user preferences is an elaboration of Definition 5 above. This definition relies
on a definition of Dop. Informally, Dop(δ, s, s′, Φ) is a variant of Do that ac-
cepts a preference formula as an extra argument and that transitions to the final
configuration that is optimal with respect to the evaluation of the preference
formula relative to the action theory, the initial state and the generic procedure.
It is formally defined in Section 4.1.

Definition 6 (Web Service Composition w/ User Preferences (WSCP)).
A Web service composition problem with user preferences is described as a 5-tuple

(D, O, δ, C, Φ) where:
• D is a situation calculus basic action theory describing functional properties of the

9

Web services,
• O is a FOL theory describing the non-functional properties of the Web services,
• δ is a generic procedure described in Golog,
• C is a formula expressing hard user constraints, and
• Φ is a GPF describing user preferences.
WSCP determines a sequence of Web services a such that

D ∧O |= ∃s.Dop(δ, S0, s, Φ) ∧ s = do(a, S0) ∧ C(s)∧ 6 ∃s′.pref(s′, s, Φ)

I.e., the task of WSCP is to entail a sequence of services a whose execu-
tion starting in the initial situation enforces the generic procedure and hard
constraints while computing the most preferred composition of services.

4.1 Integrating Preferences into the Golog Semantics

To realize WSCP, we have to integrate preferences into Golog’s transition se-
mantics. To do so, we define 3 new relations Dop, TransP and FinalP, where:

Dop(δ, s, s′, Φ)
def
= ∃δ′.TransP∗(δ, s, δ′, s′, Φ, Φ′) ∧ FinalP(δ′, s′, Φ′). (2)

The definition of TransP follows the definition of Trans described in Section
2. In cases where the complex action δ is deterministic, there is no choice in
the successor configuration and Trans and TransP are essentially equivalent ex-
cept for the preference formula. In cases where there is nondeterminism, TransP
chooses the best successor relative to the evaluation of the preference formula.

The preference formula is evaluated over intermediate situations (partial com-
positions) by exploiting progression as described in [7]. Informally, progression
takes a situation and a temporal logic formula (TLF), evaluates the TLF with
respect to the state of the situation, and generates a new formula representing
those aspects of the TLF that remain to be satisfied in subsequent situations.
We designate the progression of GPF Φ with respect to situation s by ρs(Φ).

TransP is defined as follows. We focus on the nondeterministic cases.

TransP(nil, s, δ′, s′, Φ, Φ′) ≡ False ∧ Φ′ = Φ

TransP(a, s, δ′, s′, Φ, Φ′) ≡ Poss(a[s], s) ∧ δ′ = nil ∧ s′ = do(a[s], s) ∧ Φ′ = ρs(Φ)

TransP(φ?, s, δ′, s′, Φ, Φ′) ≡ φ[s] ∧ δ′ = nil ∧ s′ = s ∧ Φ′ = Φ

TransP([δ1; δ2], s, δ
′, s′, Φ, Φ′) ≡ FinalP(δ1, s, Φ) ∧ TransP(δ2, s, δ

′, s′, Φ, Φ′)

∨ ∃δ′′.δ′ = (δ′′; δ2) ∧ TransP(δ1, s, δ
′′, s′, Φ, Φ′)

TransP([δ1 | δ2], s, δ
′, s′, Φ, Φ′) ≡

(∃s′1, s′2, δ′1, δ′2, Φ′
1, Φ

′
2).TransP(δ1, s, δ

′
1, s

′
1, Φ, Φ′

1) ∧ TransP(δ2, s, δ
′
2, s

′
2, Φ

′
2)

∧ (pref(s′1, s
′
2, Φ) ⊃ (δ′ = δ′1 ∧ s′ = s′1 ∧ Φ′ = Φ′

1))

∧ (pref(s′2, s
′
1, Φ) ⊃ (δ′ = δ′2 ∧ s′ = s′2 ∧ Φ′ = Φ′

2))

TransP(π(x)δ, s, δ′, s′, Φ, Φ′) ≡ ∃x.TransP (δv
x, s, δ′, s′, Φ, Φ′)

∧ (6 ∃y, s′′, δ′′, Φ′′).T ransP (δv
y , s, δ′′, s′′, Φ, Φ′′) ∧ pref(s′′, s′, Φ)

FinalP(δ, s, Φ) ≡ Final(δ, s)

4 the content of D and O would typically come from an OWL-S, SWSO, or other
semantic web service ontology.

10

4.2 Theoretical Results

We now prove some results concerning our characterization of WSCP. First we
prove the soundness of Web service composition using generic procedures and
customizing preferences (WSCP) as defined in Definition 6 by relating it back
to Web service composition using generic procedures but no user preferences.
Theorem 1 (Soundness).

If a is a WSCP relative to WSCP problem (D, O, δ, C, Φ), then a is a WSC relative

to WSC problem (D, O, δ, C).

The proof is by cases over TransP and follows from the definition of Dop.
Theorem 2 (Optimality).
If a is a WSCP relative to WSCP problem P = (D, O, δ, C, Φ) and δ is a tree program

then a is optimal with respect to P , i.e. there is no other WSC b such that b is preferred

over WSC a relative to Φ.

The proof is by cases over TransP, exploiting the correctness of progression
of preference formulae proven in [7] and the bounded size of the search space.

5 Implementation and Application

5.1 Implementation

We have implemented the generation of Web Service compositions using generic
procedures and customizing user preferences as described in previous sections.
Our implementation, GologPref, builds on an implementation of IndiGolog [5]
in SWI Prolog, modifying it to implement TransP, FinalP, the progression of
preference formulae, and the maintenance of a frontier of potential partial com-
positions (aka plans). Our implementation also makes use of the data structures
and the best-first search strategy used in pplan, a preference-based planner pre-
viously implemented by our group [7]. This planner uses an admissible heuristic,
thus guaranteeing optimality.

A vanilla Golog implementation takes a basic action theory D5 and a Golog
program δ as input and transitions through the Golog program using Trans
until Final is TRUE. In cases where there is nondeterminism, the transition is
chosen arbitrarily. Golog backtracks until it finds a plan that satisfies the Golog
program, i.e., that successfully terminates.

In GologPref, we likewise transition through the Golog program, now using
TransP, however with the generation of each new situation term, GologPref pro-
gresses the preference formula and computes the weight of the situation (which
represents a partial composition) relative to the progressed preference formula,
ordering situations on the frontier based on pplan’s admissible heuristic. Golog-
Pref expands situations on the frontier based on this best-first search heuristic
until it realizes a WSCP.

Consider the generic procedure anyorder[bookAir, bookHotel] which states
that we to book an airline ticket and a hotel room in any order, and the preference
P8 which states that Lara prefers to book her hotel before booking her air
5 See [5] for a description of the translation of D to Prolog.

11

ticket. In the case where GologPref is faced with the partial plan bookAir and
the alternative partial plan bookHotel it examines the computed weights of the
partial plans chooses bookHotel as the preferred partial plan to expand.

GologPref interfaces with Web services on the Web through the implemen-
tation of domain-specific scrapers developed using AgentBuilder 3.2, Web agent
design applications developed by Fetch Technologies c©. Among the sites we have
scraped are Mapquest, and several air, car and hotel services. The information
gathered is collected in XML and then processed by GologPref.

5.2 Application

We tested GologPref in the domain of travel planning. Our tests serve predom-
inantly as a proof of the concept and to illustrate the utility of GologPref.

Our generic procedure which is represented in Golog was very simple, allow-
ing flexibility in how it could be instantiated. What follows is an example of the
Prolog encoding of a GologPref generic procedure.

anyorder{[bookAcc, bookCityToCityTranspo, bookLocalTranspo]

proc(bookAcc(Location, Day, Num),

[stayWithFriends(Location) | bookHotel(Location, Day, Num)]).

proc(bookLocalTranspo(Location, StartDay, ReturnDay),

[getRide(Location, StartDay, ReturnDay) |

walk(Location) | bookCar(Location, StartDay, ReturnDay)]).

proc(bookCityToCityTranspo(Location, Des, StartDay, ReturnDay),

[getRide(Location, Des, StartDay, ReturnDay) |

bookAir(Location, Des, StartDay, ReturnDay) |

bookCar(Location, Des, StartDay, ReturnDay)]).

We tested our GologPref generic procedure with 3 different user profiles: Jack
the impoverished university student, Lara the picky frequent flyer, and Conrad
the corporate executive who likes timely luxury travel. Each user lived in Toronto
and wanted to be in Chicago for specific days. A set of rich user preferences were
defined for each user along the lines of those illustrated in Section 3. These
preferences often required access to different Web information, such as driving
distances. Space precludes listing of the preferences, code and full test results,
but these are available at http://www.cs.toronto.edu/~sheila/gologpref/.

Not surprisingly, in all cases, GologPref found the optimal WSCP for the user.
Compositions varied greatly ranging from Jack who arranged accommodations
with friends; checked out the distance to his local destinations and then arranged
his local transportation (walking since his local destination was close to where he
was staying); then once his accommodations were confirmed, booking an econ-
omy air ticket Toronto-Chicago with one stop on US Airways with Expedia. Lara
on the other hand, booked a hotel (not Hilton), booked an intermediate-sized
car with National, and a direct economy air ticket with Star Alliance partner
Air Canada via the Air Canada Web site. The optimality and the diversity of

12

the compositions, all from the same generic procedure, illustrate the flexibility
afforded by the WSCP approach.

Figure 1 shows the number of nodes expanded relative to the search space
size for 6 test scenarios. The full search space represents all possible combina-
tions of city-to-city transportation, accommodations and local transportation
available to the users which could have been considered. These results illustrate
the effectiveness of the heuristic used to find optimal compositions.

Case Nodes Nodes Time Nodes in
Number Expanded Considered (sec) Full Search Space

1 104 1700 20.97 28,512

2 102 1647 19.93 28,512

3 27 371 2.88 28,512

4 27 368 2.92 28,512

5 99 1692 21.48 28,512

6 108 1761 21.29 28,512

Fig. 1. Test results for 6 scenarios run under Windows XP with a 593MHz processor
and 512 MB of RAM. The times shown are five run averages.

5.3 Integrated Optimal Web Service Selection

Most Web service composition systems use AI planning techniques and as such
generally ignore the important problem of Web service selection or discovery,
assuming it will be done by a separate matchmaker. The work presented here
is significant because it enables the selection of services for composition based,
not only on their inputs, outputs, preconditions and effects but also based on
other nonfunctional properties. As such, users are able to specify properties of
services that they desire along side other properties of their preferred solution,
and services are selected that optimize for the users preferences in the context
of the overall composition.

To see how selection of services can be encoded in our system, we reintroduce
the service parameter U which was suppressed from the example preferences in
Section 3. Revisiting P2, we see how the selection of a service U is easily realized
within our preference framework with preference P2’.

(∃ C, U).occ′(bookAir(C, economy, direct, U)) ∧member(C, starAlliance)

∧ serviceType(U, airT icketV endor) ∧ sellsT ickets(U, C) (P2’)

6 Summary and Related Work

In this paper we argued that the integration of user preferences into Web service
composition was a key missing component of Web service composition. Building
on our previous framework for Web service composition via generic procedures
[1] and our more recent work on preference-based planning [7], we proposed a
system for Web service composition with user preferences. Key contributions

13

of this paper include: characterization of the task of Web service composition
with generic procedures and user preferences, provision of a previously devel-
oped language for specifying user preferences, integration of rich qualitative user
preferences into Golog, a proof of the soundness and optimality of our composi-
tions with respect to the user’s preferences, and a working implemented system,
GologPref. A notable side effect of our framework is the seamless integration of
Web service selection with the composition process.

Highlights of the GologPref implementation include the use of progression
for evaluation of nonMarkovian preference formulae and an admissible heuristic
to guide best-first search, guaranteeing optimality. We tested GologPref on 6
diverse scenarios applied to the same generic procedure. Results illustrated the
diversity of compositions that could be generated from the same generic proce-
dure. The number of nodes expanded by the heuristic search was several orders of
magnitude smaller than the grounded search space, illustrating the effectiveness
of the heuristic and the Golog program in guiding search.

A number of researchers have advocated using AI planning techniques to
address the task of Web service composition including using regression-based
planners [2], planners based on model checking (e.g., [3]), highly optimized hi-
erarchical task network (HTN) planners such as SHOP2 (e.g., [16]), and most
recently a combination of classical and HTN planning called XPLAN [12]. Like
Golog, HTNs afford the user the ability to define a generic procedure or template
of how to perform a task.

Recently [6] incorporated simple service preferences into the SHOP2 HTN
planner to achieve dynamic service binding. Their preference language is sig-
nificantly less expressive than the one presented here and is restricted to the
task of service selection rather than solution optimization. Nevertheless, it is
a promising start. The most related previous work was performed by a subset
of the authors in which they precompiled a subset of the preference language
presented here into Golog programs that were then integrated with decision-
theoretic Golog (DTGolog) program [17]. The main objective of this work was
to provide a means of integrating qualitative and quantitative preferences for
agent programming. While both used a form of Golog, the form and processing of
preferences was quite different. While we know of no other work integrating pref-
erences into Web service composition, there is a recent surge in preference-based
planning. Early preference-based planners include pplan [7] and an approach
to preference-based planning using answer set programming [18]. A number of
preference-based planners were developed for the 2006 International Planning
Competition (IPC-5) and are yet to be published. Preliminary descriptions of
these planners can be found at http://zeus.ing.unibs.it/ipc-5/.

Acknowledgements

Thanks to Christian Fritz for useful discussions and to Fetch Technologies for allowing
us to use their AgentBuilder software. We also gratefully acknowledge the Natural Sci-
ences and Engineering Research Council of Canada (NSERC) and the CRA’s Canadian
Distributed Mentorship Project (CDMP) for partially funding this research.

14

References

1. McIlraith, S., Son, T.C.: Adapting Golog for composition of semantic web services.
In: Proceedings of the Eighth International Conference on Knowledge Representa-
tion and Reasoning (KR02), Toulouse, France (2002) 482–493

2. McDermott, D.V.: Estimated-regression planning for interactions with web ser-
vices. In: Proceedings of the Sixth International Conference on AI Planning and
Scheduling (AIPS-02). (2002) 204–211

3. Traverso, P., Pistore, M.: Automatic composition of semantic web services into
executable processes. In: Proceedings of the Third International Semantic Web
Conference (ISWC2004). (2004)

4. McIlraith, S., Son, T., Zeng, H.: Semantic Web services. In: IEEE Intelligent
Systems (Special Issue on the Semantic Web). Volume 16. (2001)

5. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press, Cambridge, MA (2001)

6. Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for web service
composition using SHOP2. Journal of Web Semantics 1(4) (2005) 377–396

7. Bienvenu, M., Fritz, C., McIlraith, S.: Planning with qualitative temporal pref-
erences. In: Proceedings of the Tenth International Conference on Knowledge
Representation and Reasoning (KR06). (2006) 134–144

8. Horrocks, I., Patel-Schneider, P., van Harmelen, F.: From SHIQ and RDF to
OWL: The making of a web ontology language. Journal of Web Semantics 1(1)
(2003) 7–26

9. Martin, D., Burstein, M., McDermott, D., McIlraith, S., Paolucci, M., Sycara, K.,
McGuinness, D., Sirin, E., Srinivasan, N.: Bringing semantics to web services with
owl-s. World Wide Web Journal (2006) To appear.

10. Bruijn, J.D., Lausen, H., Polleres, A., Fensel, D.: The web service modeling lan-
guage WSML: An overview. Technical report, DERI (2006)

11. Battle, S., Bernstein, A., Boley, H., Grosof, B., adn R. Hull, M.G., Kifer, M.,
Martin, D., McIlraith, S., McGuinness, D., Su, J., Tabet, S.: Semantic web ser-
vice ontology (SWSO) first-order logic ontology for web services (FLOWS) (2005)
http://www.daml.org/services/swsl/report/.

12. Klusch, M., Gerber, A., Schmidt, M.: Semantic web service composition planning
with OWLS-Xplan. In: Working notes of the AAAI-05 Fall Symposium on Agents
and the Semantic Web, Arlington VA, USA (2005)

13. McIlraith, S.A., Fadel, R.: Planning with complex actions. In: 9th International
Workshop on Non-Monotonic Reasoning (NMR), Toulouse, France (2002) 356–364

14. Narayanan, S., McIlraith, S.: Simulation, verification and automated composition
of web services. In: Proceedings of the Eleventh International World Wide Web
Conference (WWW-2002). (2002)

15. de Giacomo, G., Lespérance, Y., Levesque, H.: ConGolog, a concurrent program-
ming language based on the situation calculus. Artificial Intelligence 121(1–2)
(2000) 109–169

16. Sirin, E., Parsia, B., Hendler, J.: Template-based composition of semantic web
services. In: Working notes of the AAAI-05 Fall Symposium on Agents and the
Semantic Web. (2005)

17. Fritz, C., McIlraith, S.: Decision-theoretic GOLOG with qualitative preferences.
In: Proceedings of the Tenth International Conference on Principles of Knowledge
Representation and Reasoning (KR06). (2006)

18. Son, T., Pontelli, E.: Planning with preferences using logic programming (2007)
Theory and Practice of Logic Programming. To appear.

