
A Relaxed Approach to RDF Querying

Carlos A. Hurtado⋆1, Alexandra Poulovassilis2, and Peter T. Wood2

1 Universidad de Chile (churtado@dcc.uchile.cl)
2 Birkbeck, University of London ({ap,ptw}@dcs.bbk.ac.uk)

Abstract. We explore flexible querying of RDF data, with the aim of
making it possible to return data satisfying query conditions with varying
degrees of exactness, and also to rank the results of a query depending
on how “closely” they satisfy the query conditions. We make queries
more flexible by logical relaxation of their conditions based on RDFS en-
tailment and RDFS ontologies. We develop a notion of ranking of query
answers, and present a query processing algorithm for incrementally com-
puting the relaxed answer of a query. Our approach has application in
scenarios where there is a lack of understanding of the ontology under-
lying the data, or where the data objects have heterogeneous sets of
properties or irregular structures.

1 Introduction

The conjunctive fragment of most RDF query languages (e.g., see [8, 9]) consists
of queries of the form H ← B, where the body of the query B is a graph pattern,
that is, an RDF graph over IRIs, literals, blanks, and variables. The head of the
query H is either a graph pattern or a tuple variable (list of variables). The
semantics of these queries is simple. It is based on finding matchings from the
body of the query to the data and then applying the matchings to the head of
the query to obtain the answers.

Recently, the W3C RDF data access group has emphasized the importance
of enhancing RDF query languages to meet the requirements of contexts where
RDF can be used to solve real problems. In particular, it has been stated that
in RDF querying “it must be possible to express a query that does not fail
when some specified part of the query fails to match” [5]. This requirement
has motivated the OPTIONAL clause, presented in the emerging SPARQL W3C
proposal for querying RDF [13] and previously introduced in SeRQL [3]. The
OPTIONAL clause allows the query to find matchings that fail to match some con-
ditions in the body. In contrast to other approaches to flexible querying (e.g.,
[1, 11]), the OPTIONAL construct incorporates flexibility from a “logical” stand-
point, via relaxation of the query’s conditions. This idea, however, is exploited
only to a limited extent, since the conditions of a query could be relaxed in ways
other than simply dropping optional triple patterns, for example by replacing
constants with variables or by using the class and property hierarchies in an
ontology associated with the data (such as that shown in Figure 1).

⋆ Carlos A. Hurtado was supported by Millennium Nucleus, Center for Web Research
(P04-067-F), Mideplan, and by project FONDECYT 1030810, Chile.

2

1.1 RDFS Ontologies

It is common that users interact with RDF applications in the context of an
ontology. We assume that the ontology is modeled as an RDF graph with inter-
preted RDFS vocabulary. The RDFS vocabulary defines classes and properties
that may be used for describing groups of related resources and relationships be-
tween resources. To state that a resource is an instance of a class, the property
rdf:type may be used. In this paper we use a fragment of the RDFS vocabulary,
which comprises (in brackets is the shorter name we will use) rdfs:range [range],
rdfs:domain [dom], rdf:type [type], rdfs: subClassOf [sc] and rdfs:subPropertyOf
[sp]3.

ConferenceArticle

Article

sc

sc

sc

WebPage

sc

contributorOf

editorOf

authorOf

sp

spsp

Publication

range

range

range

range
Document

proceedingsEditorOf

Fig. 1. An RDFS ontology modeling documents and people who contribute to them.

As an example, the ontology of Figure 1 is used to model documents along
with properties that model different ways people contribute to them (e.g., as
authors, editors, or being the editor of the proceedings where an article is pub-
lished).

1.2 The RELAX Clause

In this paper, we propose the introduction of a RELAX clause as a generalization
of the OPTIONAL clause for conjunctive queries. As an example, consider the
following SPARQL-like query Q4:

?Z, ?Y ← {(?X,name, ?Z), OPTIONAL{(?X, proceedingsEditorOf , ?Y)}}.

The body of this query is a graph pattern comprising two triple patterns. This
query returns names of people along with the IRIs of conference articles whose

3 We omit in this paper vocabulary used to refer to basic classes in RDF/S such as
rdf: Property, rdfs: Class, rdfs:Resource, rdfs:Literal, rdfs:XMLLiteral, rdfs:Datatype,
among others. We also omit vocabulary for lists, collections, and variations on these,
as well as vocabulary used to place comments in RDF/S data.

4 SPARQL has SQL-like syntax; for brevity, in this paper we express queries as rules.

3

proceedings they have edited. Because the second triple pattern in the body
of the query is within the scope of an OPTIONAL clause, the query also returns
names of people for which the second pattern fails to match the data (i.e., people
who have not edited proceedings).

Now consider the ontology of Figure 1. Although the user may want to re-
trieve editors of proceedings at first, she/he might also be interested in knowing
about people who have contributed to publications in other roles, along with the
publications themselves. In order to save the user the effort of inspecting the
ontology and rewriting the query, the system could automatically return more
relaxed answers for the same original query. This is achieved by rewriting Q to
replace OPTIONAL with RELAX. Now after returning editors of conference proceed-
ings, the system can replace the triple pattern (?X, proceedingsEditorOf , ?Y)
with (?X, editorOf , ?Y), yielding a new, relaxed query that returns editors of
publications along with their publications. Subsequently, this triple pattern can
be rewritten to the triple pattern (?X, contributorOf , ?Y) to obtain more general
answers.

Group A (Subproperty) (1) (a,sp,b) (b,sp,c)
(a,sp,c)

(2) (a,sp,b) (x,a,y)
(x,b,y)

Group B (Subclass) (3) (a,sc,b) (b,sc,c)
(a,sc,c)

(4) (a,sc,b) (x,type,a)
(x,type,b)

Group C (Typing) (5) (a,dom,c) (x,a,y)
(x,type,c)

(6) (a,range,d) (x,a,y)
(y,type,d)

(Simple Entailment) (7) For a map µ : G′ → G : G
G′

Fig. 2. RDFS Inference Rules

The idea of making queries more flexible by the logical relaxation of their
conditions is not new in database research. Gaasterland et al. [7] established the
foundations of such a mechanism in the context of deductive databases and logic
programming, and called the technique query relaxation.

1.3 Notion of Query Relaxation for RDF

We study the query relaxation problem in the setting of the RDF/S data model
and RDF query languages and show that query relaxation can be naturally
formalized using RDFS entailment. We use an operational semantics for the
notion of RDFS entailment, denoted |=, characterized by the derivation rules
given in Figure 2 (for details, see [8, 10]). Rules in groups (A), (B), and (C)
describe the semantics of the RDFS vocabulary we use in this paper (i.e., sp,
sc, type, dom, and range), and rule 7 (which is based on the notion of map
which we will explain in Section 2), essentially states that blank nodes behave
like existentially quantified variables. As an example, from a graph we can entail
another graph which replaces constants with blanks or blanks with other blanks.

4

Intuitively, as RDFS entailment is characterized by the rules of Figure 2, a
relaxed triple pattern t′ can be obtained from triple t by applying the deriva-
tion rules to t and triples from the ontology. As an example, the triple pattern
(?X, proceedingsEditorOf , ?Y) can be relaxed to (?X, editorOf , ?Y), by apply-
ing rule 3 to the former and the triple (proceedingsEditorOf , sp, editorOf) in
the ontology of Figure 1. The different relaxed versions of an original query are
obtained by combining relaxations of triple patterns that appear inside a RELAX

clause.

The notion of query relaxation we propose naturally subsumes two broad
classes of relaxations (further types of relaxations within these two classes are
listed in Section 3.4). The first class of relaxation, which we call simple relax-
ations, consists of relaxations that can be entailed without an ontology, which
include dropping triple patterns, replacing constants with variables, and break-
ing join dependencies. These are captured by derivation rule 7 (Figure 2). The
second class of relaxations, which we call ontology relaxations, includes relax-
ations entailed using information from the ontology and are captured by rule
groups (A),(B) and (C); these include relaxing type conditions, relaxing proper-
ties using domain or range restrictions and others.

1.4 Summary of Contributions and Outline

In this paper, we develop a framework for query relaxation for RDF. We intro-
duce a notion of query relaxation based on RDFS entailment, which naturally
incorporates RDFS ontologies and captures necessary information for relaxation
such as the class and property hierarchies.

By formalizing query relaxation in terms of entailment, we obtain a semantic
notion which is by no means limited to RDFS and could also be extended to more
expressive settings such as OWL entailment and OWL ontologies, to capture
further relaxations. Our framework generalizes, for the conjunctive fragment
of SPARQL, the idea of dropping query conditions provided by the OPTIONAL

construct.

An essential aspect of our proposal, which sets it apart from previous work on
query relaxation, is to rank the results of a query based on how “closely” they
satisfy the query. We present a notion of ranking based on a structure called
the relaxation graph, in which relaxed versions of the original query are ordered
from less to more general from a logical standpoint. Since the relaxation graph is
based on logic subsumption, ranking does not depend on any syntactic condition
on the knowledge used for relaxation (such as rule ordering in logic-programming
approaches [7]). Finally, we sketch a query processing algorithm to compute the
relaxed answer of a query, and examine its correctness and complexity.

The rest of the paper is organized as follows. Section 2 introduces prelimi-
nary notation. Section 3 formalizes query relaxation and Section 4 studies query
processing. In Section 5 we study related work and in Section 6 we present some
concluding remarks.

5

2 Preliminary Definitions

In this section we present the basic notation and definitions that will be used
subsequently in this paper. Some of these were introduced in [2, 8, 10, 12].

RDF Graphs In this paper we work with RDF graphs which may mention the
RDFS vocabulary. We assume there are infinite sets I (IRIs), B (blank nodes),
and L (RDF literals). The elements in I ∪B ∪L are called RDF terms. A triple
(v1, v2, v3) ∈ (I∪B)×I×(I∪B∪L) is called an RDF triple. In such a triple, v1 is
called the subject, v2 the predicate and v3 the object. An RDF graph (just graph
from now on) is a set of RDF triples. Given two RDF graphs G1, G2, a map from
G1 to G2 is a function µ from terms of G1 to terms of G2, preserving IRIs and
literals, such that for each triple (a, b, c) ∈ G1 we have (µ(a), µ(b), µ(c))) ∈ G2.

Entailment We will decompose RDFS entailment into two notions of entailment.
The first is simple entailment [10], which depends only on the basic logical form
of RDF graphs and therefore holds for any vocabulary. An RDF graph G1 simply
entails G2, denoted G1 |=simple G2, if and only if there exists a map from G2 to
G1. That is, simple entailment is captured by rule 7 of Figure 2.

The second notion of entailment captures the semantics added by the RDFS
vocabulary. We write that G1 |=rule G2 if G2 can be derived from G1 by it-
eratively applying rules in groups (A), (B) and (C) of Figure 2. In this paper,
we also use a notion of closure of an RDF graph G [10], denoted cl(G), which
is the closure of G under the rules in groups (A), (B) and (C). We have that
G1 |=rule G2 if and only if G2 ∈ cl(G1).

Now, by a result from from [10], RDFS entailment (for the fragment of RDFS
we use in this paper) can be characterized as follows: G1 RDFS-entails G2,
denoted G1 |=RDFS G2, if and only if there is a graph G such that G1 |=rule G

and G |=simple G2. An alternative characterization of RDFS entailment is the
following: G1 |=RDFS G2 if and only if there is a map from G2 to cl(G1). Therefore,
in order to test the entailment G1 |=RDFS G2, we can first apply rules in groups
(A), (B), and (C) to compute cl(G1), and then check whether there exists a map
from G2 to cl(G1).

Graph Patterns Consider a set of variables V disjoint from the sets I, B, and
L. A triple pattern is a triple (v1, v2, v3) ∈ (I ∪ V) × (I ∪ V) × (I ∪ V ∪ L). A
graph pattern is a set of triple patterns. Given a graph pattern P , we denote by
var(P) the variables mentioned in P . The following notation is needed to define
triple pattern relaxation in Section 3. The notion of map is generalized to graph
patterns by treating variables as blank nodes. . In addition, t1 is S-isomorphic
to t2 if there are maps µ1 from t1 to t2 and µ2 from t2 to t1 that both preserve
S. In our examples, variables are indicated by a leading question mark, while
literals are enclosed in quotes.

Conjunctive Queries for RDF A conjunctive query Q is an expression T ← B,
where B is a graph pattern, and T = 〈T1, . . . , Tn〉 is a list of variables which

6

belongs to var(B). (The framework formalized in this paper can be easily ex-
tended to queries with graph patterns as query heads.) We denote T by Head(Q),
and B by Body(Q). A query Q may be formulated over an RDFS ontology
O, which means that Q may mention vocabulary from O and its answer is
obtained taking into account the semantics of O. We assume that the ontol-
ogy is well designed in the sense that predicates of triples in O cannot be in
the set {type, dom, range, sp, sc}. We define a matching to be a function from
variables in Body(Q) to blanks, IRIs and literals. Given a matching Θ, we de-
note by Θ(Body(Q)) the graph resulting from Body(Q) by replacing each vari-
able X by Θ(X). Given an RDF graph G, the answer of Q is the set of tu-
ples, denoted ans(Q, O, G), defined as follows: for each matching Θ such that
Θ(Body(Q)) ⊆ cl(O∪G), return Θ(Head(Q)). When O is clear from the context,
we omit it, and write ans(Q, G) instead of ans(Q, O, G).

3 Formalizing Query Relaxation

We will present a relaxed semantics for queries in a stepwise manner. In Sec-
tion 3.1, we present the notion of relaxation of triple patterns, and in Section 3.2
we introduce the notion of the relaxation graph of a triple pattern. This is used
in Section 3.3 to define the relaxation graph of a query. The relaxation graph is
the basis for the notion of the relaxed answer and ranking of a query we propose
in Section 3.5. In Section 3.4, we explain different types of relaxations.

3.1 Triple Pattern Relaxation

We model relaxation as a combination of two types of relaxations, ontology
relaxation and simple relaxation. Intuitively, the former comprises relaxations
that are based on the ontology at hand and do not replace terms of the original
triple pattern. In contrast, simple relaxations consist only of replacements of
terms of the original triple pattern (e.g., replacing a literal or URI with a variable
or a variable with another variable).

Relaxation will be defined in the context of an ontology, denoted by O, and
a set of variables, called fixed variables, denoted by F . So we fix O and F for
the definitions that follow.

Let t1, t2 be triple patterns, where t1 6∈ cl(O), t2 6∈ cl(O), and var(t2) =
var(t1) ⊆ F . Ontology relaxation is defined as follows: t1 ≺

∗
onto t2 if ({t1} ∪

O) |=rule t2. As an example, let O be the ontology of Figure 1 and let F = {?X}.
Then, we have that (?X, type,ConferenceArticle) ≺∗

onto (?X, type,Article), and
we have that (JohnRobert ,ContributorOf , ?X) ≺∗

onto (?X, type,Document), among
other ontology relaxations. It is not the case that (?X,ContributorOf , ?Y) ≺∗

onto

(?Y, type,Document), since the set of variables of the triples are different.

Simple relaxation is defined as follows: t1 ≺
∗
simple t2 if t1 |=simple t2 via a map

µ that preserves F (recall the notion of a map preserving a set of variables from
Section 2). As an example, we have (?X, type,Article) ≺∗

simple (?X, type, ?Z)

7

and (?X, type,Article) ≺∗
simple (?X, ?W,Article), among other simple relax-

ations.

We now define relaxation. We say that t2 relaxes t1, denoted t1 ≺
∗ t2, if one

of the following hold: (i) t1 ≺
∗
onto t2, (ii) t1 ≺

∗
simple t2, or (iii) there exists a triple

pattern t such that t1 ≺
∗ t and t ≺∗ t2. The following proposition proves that

simple relaxations always arise after ontology relaxations.

Proposition 1. Let t1, t2 be triple patterns. Then t1 ≺
∗ t2 if and only if there

exists t such that t1 ≺
∗
onto t and t ≺∗

simple t2.

We will end this section by proving some properties of the relaxation rela-
tionships introduced. We define an ontology O to be acyclic if the subgraphs
defined by sc and sp are acyclic. Acyclicity is considered good practice in mod-
eling ontologies. Recall the notion of graph pattern isomorphism with respect to
a set of fixed variables from Section 2.

Proposition 2. Let ≺∗
onto, ≺

∗
simple and ≺∗ be defined in the context of an on-

tology O and a set F of fixed variables. (i) ≺∗
onto is a partial order if and only

if O is acyclic. (ii) ≺∗
simple is a partial order up to F -isomorphism. (iii) ≺∗ is a

partial order up to F -isomorphism if and only if O is acyclic.

In what follows we assume that O is acyclic, and assume triple patterns to be
equal if they are F -isomorphic. Therefore, we consider the relaxation relations
to be partial orders. In particular, if a variable is not in F , without loss of
generality we assume it appears in no more that one triple pattern. We denote
by ≺ (direct relaxation) the reflexive and transitive reduction of ≺∗ (relaxation).
We use similar notation for ontology and simple relaxation.

3.2 Relaxation Graph of a Triple Pattern

We are interested in relaxing each of the triple patterns that occurs inside the
RELAX clause of a query, so we next adapt the relaxation relationship to use
relaxation “above” a given triple pattern. The relaxation relation “above” a
triple pattern t, denoted by ≺∗

t , is ≺∗ restricted to triple patterns t′ such that
t ≺∗ t′, and where F = var(t) (i.e., the variables of t are the fixed variables in
the relaxation). The relaxation graph of a triple pattern t is the directed acyclic
graph induced by ≺t.

As an example, consider the ontology O of Figure 1. Let t be the triple pattern
(?X, type,Publication). Figure 3 (A) shows the relaxation graph of (?X, type,

Publication). We have that ?X is the unique fixed variable. The non-fixed vari-
ables in this graph are ?V 1, . . . , ?V 5. Figure 3 (B) shows the relaxation graph
of (JohnRobert, editorOf , ?X). Now the non-fixed variables are ?U1, . . . , ?U9.
Notice that this pattern directly relaxes to (?X, type,Publication), so this re-
laxation graph has as a subgraph the relaxation graph of Figure 3 (A).

8

(?X,type,Publication)

(?X,type,Document)

(?X,?V1,Publication) (?X,?V2,Document)

(?X,?V4,?V5)

(?X,type,?V3)

(?X,type,Publication) (John Robert,contributorOf,?X)

(John Robert,editorOf,?X)

(?X,type,Document)

(?X,?U1,Publication) (?X,?U2,Document) (?X,type,?U3)

(?X,?U4,?U5)

(John Robert,?U7,?X)(?U6,contributorOf,?X)

(?U8,?U9,?X)

(A) (B)

Fig. 3. (A) Relaxation graph of the triple pattern (?X, type, Publication). (B) Relax-
ation graph of the triple pattern (JohnRobert, editorOf , ?X).

3.3 Query Relaxation

In this section, we define query relaxation as the direct product of the relaxation
relations of its triple patterns. We define the direct product of two partial order
relations α1, α2, denoted α1⊗α2, as the relation α such that (e1, e2) α (e′1, e

′
2)

if and only if e1 α1 e′1 and e2 α2 e′2. The generalization of this definition to
more than two relations is straightforward.

Given a query Q, let Body(Q) = {t1, . . . , tn}. For any triple ti not inside a
RELAX clause, we overload the notation ≺∗

ti
and assume that ti relaxes only to

ti. The relaxation relation “above” Q, denoted by ≺∗
Q, is defined as ≺∗

t1
⊗ ≺∗

t2

. . .⊗ ≺∗
tn

. Direct relaxation, denoted ≺Q, is the reflexive and transitive reduction
of ≺∗

Q. The relaxation graph of Q is the directed acyclic graph induced by ≺Q.
Each node (t′1, . . . , t

′
n) in the relaxation graph of Q denotes the conjunctive

query Head(Q) ← t′1, . . . , t
′
n. In order to avoid name clashes, we assume that

the sets of non-fixed variables introduced in the relaxation relations of the triple
pattern are pairwise disjoint.

3.4 Types of Relaxation

The notion of relaxation that we propose in this paper encompasses several
different types of relaxation. Those captured by simple relaxation are as follows:

1. Dropping triple patterns. We can model the dropping of triple patterns by
introducing an “empty” triple pattern, which can be regarded as a “true”
condition to which any triple pattern relaxes. In this form, relaxation gen-
eralizes the use of the OPTIONAL clause within the conjunctive fragment of
SPARQL.

2. Constant relaxation: replacing a constant with a variable in a triple pattern.
This can be further classified according to whether the variable replaces a
property or a subject/object constant.

9

3. Breaking join dependencies: generating new variable names for a variable
that appears in multiple triple patterns. In order to model this type of re-
laxation, we first transform queries by applying variable substitution. If a
variable ?X appears n > 1 times in a query Q we replace each occurrence
with a different variable and add triple patterns (?Xi, equal, ?Xj) for each
pair of new variables ?Xi, ?Xj introduced. The predicate equal represents
equality. Each of the equality clauses in a query can now also be subject to
relaxation.

The following types of relaxation are captured by our notion of ontology
relaxation (the examples given use the ontology of Figure 1):

1. Type relaxation: replacing a triple pattern (a, type, b) with (a, type, c), where
(b, sc, c) ∈ cl(O). For example, the triple pattern (?X, type,ConferenceArticle)
can be relaxed to (?X, type,Article) and then to (?X, type,Publication).

2. Predicate relaxation: replacing a triple pattern (a, p, b) with (a, q, c), where
(p, sp, q) ∈ cl(O). For example, the triple pattern (?X, proceedingsEditorOf , ?Y)
can be relaxed to (?X, editorOf , ?Y) and then to (?X, contributorOf , ?Y).

3. Predicate to domain relaxation: replacing a triple pattern (a, p, b) with (a, type, c),
where (p, dom, c) ∈ cl(O). There are no domain declarations in Figure 1.

4. Predicate to range relaxation: replacing a triple pattern (a, p, b) with (b, type, c),
where (p, range, c) ∈ cl(O). For example, the triple pattern (?X, editorOf , ?Y)
can be relaxed to (?Y, type,Publication).

5. Additional relaxations induced by additional rules from Figure 2. Combina-
tions of rules yield additional forms of relaxation. For example, the triple
pattern (Article, sc, ?Y) can be relaxed to (ConferenceArticle , sc, ?Y).

3.5 Relaxed Answer and Ranking

Any algorithm that computes a relaxed answer to a query should also return
the tuples in the relaxed answer according to some ordering. So the output of
a query processing algorithm can be viewed as twofold: (a) the relaxed answer
(already defined) and (b) a rank function that defines an ordering for the tuples
in the relaxed answer. We next define the notions of relaxed answer, rank function
and consistency of a rank function. Roughly, consistency means that the tuple
ordering defined by the rank function agrees with the ordering of queries imposed
by the query relaxation graph.

Let Q be an RDF query and G be an RDF graph. The level of a query
Qi in the relaxation graph of Q is the length of the shortest path from Q

to Qi. We denote by relax(Q, k) the set of queries in the relaxation graph
whose level is less than or equal to k. The relaxed answer of Q over G at level
k ≥ 1, ansrelax(Q, G, k), is the set of tuples

⋃
Q′∈relax(Q,k) ans(Q

′, G). We will

frequently mention ansrelax(Q, G, k) in a context where k is fixed, and in this
context we will write ansrelax(Q, G, k) simply as ansrelax(Q, G).

For a query Q′ in the relaxation graph of Q, and an RDF graph G, we define
newAnswer(Q′, G) as ans(Q′, G)− (

⋃
Qi:Qi≺∗

Q
Q′ ans(Qi, G)).

10

Let Q be a query and G be an RDF graph. A rank function for the relaxed
answer of Q over G is any function τQ,G with signature τQ,G : (ansrelax(Q, G))→
N . A rank function τQ,G is consistent if and only if for each pair of tuples
ti, tj ∈ ansrelax(Q, G), if there are queries Qi, Qj such that Qi ≺

∗
Q Qj, ti ∈

newAnswer(Qi, G), tj ∈ newAnswer(Qj , G), then τQ,G(ti) < τQ,G(tj).
Notice that in consistent rank functions, tuples in ans(Q, G) are returned first

among the tuples in the relaxed answer. The notion of answer ranking sketched
here can be improved in several directions. We may impose additional ordering
constraints in the relaxation graph. Other extensions may consider distance
metrics based on paths in the relaxation graph.

4 Query Processing

In this section, we study the problem of computing the relaxed answer of a
query. We propose an algorithm that incrementally generates matchings from
a query to an RDF graph and also ranks tuples in the answer. In Section 4.1,
we provide a procedure that computes the relaxation graph of a given triple
pattern. In Section 4.2 we present an algorithm that efficiently computes the
relaxed answer.

4.1 Computing Relaxations of a Triple Pattern

We first describe the computation of the relaxation graph for ontology relax-
ations. The procedure we propose is based on a variation of the notion of reduc-
tion of an RDFS ontology from [8]. The idea is to compute relaxed versions of a
triple pattern t by applying the derivation rules (Figure 2) to t and and triples
from the reduction. Given an ontology O, we denote by red(O) the RDF graph
resulting as follows (reverse rule means deleting the triple deduced by the rule):
(i) compute cl(O); (ii) apply reverse rules 2 and 4 until no longer applicable; and
(iii) apply reverse rules 1 and 3 until no longer applicable. In what follows, we
assume that red(O) has been precomputed.

We denote by Γ (t) the set containing triples t′ such that (i) there exists a
triple to ∈ red(O) and t,to

t′
is an instance of a rule from groups (A), (B), or (C)

(Figure 2), (ii) var(t′) = var(t), and (iii) t′ 6∈ cl(O).

Proposition 3. Let t be a triple pattern, such that t 6∈ cl(O) and var(t) ⊆ F ,
where F is the set of fix variables. (i) {t′ : t ≺onto t′} ⊆ Γ (t). (ii) Γ (t) ⊆ {t′ :
t ≺∗

onto t′}.

Proposition 3 (i) does not longer hold if we reduce the ontology also using
reverse rules 5 or 6. Proposition 3 (ii) follows directly from the definition of
ontology relaxation. The set Γ (t) can be easily computed in time O(|red(O)|)
by searching for triples to ∈ red(O) such that t, to instantiates the antecedent of
a rule, and testing the additional conditions given in the definition of Γ for the
triple patterns derived. The relaxation graph of a triple t can be computed as
follows. We start by computing Γ (t), and in iteration i, we compute Γ (t′) with

11

each new triple pattern t′ obtained in iteration i− 1, and add to the graph an
edge (t′, t′′) for each t′′ ∈ Γ (t′). In each iteration, we detect and delete transitive
edges (an edge is transitive if it connects two nodes that are also connected by a
path of length greater than one). In addition, we keep a list with triple patterns
for which Γ has been already computed so that we do not repeat computations
of Γ for the same triple pattern.

It is straightforward to generalize this procedure to compute direct simple
relaxations. We just need to add in each iteration direct relaxations to triples
that rename a constant with a variable or a variable (not in the original triple
pattern t) with another variable. In each iteration, we also have to delete triple
patterns that are isomorphic to some triple pattern already in the graph, and
delete transitive edge.

Proposition 4. Let t = (a, p, b) be a triple pattern and O be an ontology. Let
R be the relaxation graph of t. (i) R has O(m2) triples, where m is the number
of triples in red(O). (ii) Computing R takes time in O(r2m), where r is the
number of triples in R.

From Proposition 4, it follows that the relaxation graph of a query has
O(m2n) nodes, where n is the number of triple patterns inside RELAX clauses
in the query.

4.2 Computing the Relaxed Answer

In this section, we sketch a query processing algorithm which works by adapting
the RDQL query processing scheme provided by Jena [15] to the processing
of successive relaxations of a query. We assume the simplest storage scheme
provided by Jena, in which the RDF triples are stored in a single table, called
the statement table. The Jena query processing approach is to convert an RDF
query into a pipeline of “find patterns” connected by join variables. Each triple
pattern (find pattern in Jena’s terminology) can be evaluated by a single SQL
select query over the statement table. We formalize this with an operator called
find that receives a triple pattern t and a statement table G and returns all
matchings from t to the table.

In what follows, Q is the query whose relaxed answer we intend to compute,
and Q′ is an arbitrary query in the relaxation graph of Q. We have that H =
Head(Q) = Head(Q′). For the sake of simplicity, we assume that each triple
pattern in the body of Q is inside a RELAX clause. We assume that Body(Q) =
{t1, . . . , tn}, and Body(Q′) = {t′1, . . . , . . . , t

′
n}. We also fix the statement table G

we are querying. The answer of Q′ can be computed by processing (in a pipelined
fashion) a view, denoted VQ′ , defined by the following expression:

πH(find(t′1, G) ⋊⋉ . . . ⋊⋉ find(t′n, G)),

where π is the standard projection operator and ⋊⋉ is the natural join on vari-
ables shared by triple patterns. The answer of Q can be computed by a naive
algorithm that traverses the relaxation graph of Q upwards, and in each step

12

of the traversal, builds a view VQ′ , computes it, and returns those tuples which
were not returned in previous steps.

Next, we propose an algorithm that avoids the redundant processing of tuples
that arises with this naive approach. We define deltaFind(t′i, G) as the set
containing triples p ∈ G such that t′i matches p, and no triple pattern directly
below t′i in the relaxation graph of ti, matches p. The set deltaFind(t′i, G)
can be computed similarly to find(t′i, G) by filtering triples from the statement
table. Define a delta view for Q′, denoted ∆Q′ , as the following expression:

πH(deltaFind(t′1, G) ⋊⋉ . . . ⋊⋉ deltaFind(t′n, G)).

The following proposition shows that new answers (Section 3.5) correspond
to delta views.

Proposition 5. Let Q be a query and G be a RDF graph. For each query
Q′ in the relaxation graph of Q, (i) ans(Q′, G) =

⋃
Qi:Qi≺∗

Q
Q′ ∆Qi

(G), and

(ii) newAnswer(Q′, G) = ∆Q′(G).

The algorithm we propose (Figure 4), called RelaxEval, performs a breadth-
first traversal of the relaxation graph of Q, building and processing each delta
view ∆Q′ in each step of the traversal. The function level returns the level of
a triple pattern t′i in the relaxation graph Ri of ti. Line 3(a) outputs the new
answer of each query at level k. In order to find the queries at level k of the
relaxation graph, the algorithm applies the following property. The queries Q′

(defined by the join expression in Line 3 (a)) that belong to the level k of the
relaxation graph of Q are those satisfying

∑
i level(t′i, Ri) = k.

Algorithm RelaxEval

Input: a query Q (interpreted over an ontology O), where Body(Q) = {t1, . . . , tn}, a
statement table G, and an integer maxLevel .
Output: the set of tuples ansrelax(Q,G, maxLevel), where new answers are returned
successively at each level of the relaxation graph.

1. k := 0, stillMore := true
2. For each triple pattern ti ∈ Body(Q), compute the relaxation graph Ri of ti up to

level maxLevel (see Section 4.1).
3. While (k ≤ maxLevel and stillMore) do

(a) For each combination t′1 ∈ R1, . . . , t
′

n ∈ Rn such that
P

i
level(t′i, Ri) = k

do output πH(deltaFind(t′1, G) ⋊⋉ . . . ⋊⋉ deltaFind(t′n, G))
(b) k := k + 1
(c) stillMore := exist nodes t′1 ∈ R1, . . . , t

′

n ∈ Rn such that
P

i
level(t′i, Ri) = k

Fig. 4. Algorithm that computes the relaxed answer of a query.

The algorithm RelaxEval induces a rank function, denoted rankQ,G, which
maps each tuple to the position at which RelaxEval returns it. The following

13

proposition proves the correctness of RelaxEval (recall the notion of a con-
sistent rank function from Section 3.5), where for a level k of the relaxation
graph, we denote by RelaxEval(Q, G, k) the set of tuples returned in Line 3(a)
of RelaxEval.

Proposition 6. Let Q be a query and G be a RDF graph. (i) For all k we
have RelaxEval(Q, G, k) = ansrelax(Q, G, k). (ii) The rank function rankQ,G is
consistent.

Both (i) and (ii) follow from Proposition 5 and the fact that the algorithm
RelaxEval traverses the relaxation graph of Q in breadth-first fashion.

We end this section by comparing the computation cost of RelaxEval with
the naive approach. We estimate the cost of computing a view VQ′ as the ex-
pression |find(t′1, G)|× . . .×|find(t′n, G)|, which represents the cost of the join
operations. Roughly, it can be assumed that the find and deltaFind opera-
tions have the same cost, so we omit this cost in the expression. In the following

proposition, we assume that δ = |find(t′i,G)|
|deltaFind(t′i,G)| is constant for every t′i in the

relaxation graph of every triple pattern ti ∈ Body(Q).

Proposition 7. Let Q be a query (assume for simplicity that all its triple pat-
tern are subject to relaxation), O be an ontology and G an RDF graph. (i) The
naive approach to compute the relax answer at level k runs in time O(δnpT),
where T denotes the time taken by RelaxEval(Q, G, k), n = |Body(Q)|, and
p = |relax(Q, k)|. (ii) RelaxEval(Q, G, k) runs in time O(m2n|G|n), where m

is the number of triples in red(O).

The above proposition shows that the algorithm has exponential complexity,
however its complexity is polynomial in the size of the data queried for a fixed
query Q (data complexity). In addition, the answer is generated incrementally
and hence the processing can be halted at any level in the relaxation graph. The
number of triples in red(O) provides an upper bound for k, the number of levels
in the evaluation.

An improvement to the algorithm would be to process several delta views at
the same time in an integrated pipelined fashion. In practice, we can improve
query processing performance by further caching the results of deltaFind(t, G)
for all triple patterns t that occur more than once in the query relaxation graph
(such duplicate occurrences can be detected as the relaxation graphs of the
individual triple patterns in the original query are being constructed).

5 Related Work

Query languages based on regular expressions provide a form of flexible query-
ing. The G+ query language by Cruz et al. [6] proposes graph patterns where
edges are annotated with regular expressions over labels. In this form, each graph
pattern represents a set of more basic graph patterns, and therefore, a query ex-
tracts matchings that relate to its body in a variety of ways. This work considers
queries over directed labeled graphs.

14

Kanza and Sagiv [11] propose a form of flexible querying based on a notion
of homeomorphism between the query and the graph. Their data model is a
simplified form of the Object Exchange Model (OEM).

Bernstein and Kiefer [1] incorporate similarity joins into the RDQL query
language. This is done by allowing sets of variables in an RDQL query to be
declared as imprecise. Bindings for these variables are then compared based on
a specified similarity measure, such as edit distance.

Stuckenschmidt and van Harmelen [14] consider conjunctive queries over a
terminological knowledge base that includes class, relation and object definitions.
They also use query containment as a way of viewing query approximations, but
are concerned about evaluating less complex queries first, so that the original
query is evaluated last. They use a query graph to decide which conjuncts from
the original query should be successively added to the approximate query. This
is analogous to SPARQL queries in which every conjunct is optional.

Bulskov et al. [4] consider the language Ontolog which allows compound
concepts to be formed from atomic concepts attributed with semantic relations.
They define a similarity measure between concepts based on subsumption in
a hierarchy of concepts. This gives rise to a fuzzy set of concepts similar to a
given concept. They also introduce specialization/generalization operators into
a query language that allow specializations or generalizations of concepts to be
returned. They admit that combining this with similarity may make answers
confusing.

6 Concluding Remarks

Despite being a relatively unexplored technique in the semantic Web, query
relaxation may have an important role in improving RDF data access. One
motivation for this technique is for querying data where there is a lack of un-
derstanding of the ontology that underlies the data. Another application is the
extraction of objects with heterogeneous sets of properties because the data is in-
complete or has irregular structure. As an example, a relaxed query can retrieve
the properties that are applicable to each resource among a set of resources hav-
ing different properties. Query relaxation can also make it possible to retrieve
data that satisfies the query conditions with different degrees of exactitude.

There are several areas for future work. One is the introduction of relaxation
into general SPARQL queries, including disjunctions and optionals. This should
also involve a generalization of the RELAX clause so that it can be applied to entire
graph patterns instead of single triple patterns. Another important issue for
future work is the design, implementation and empirical evaluation of algorithms
for computing relaxed answers. The graph-like nature of RDF provides additional
richness for a query relaxation framework, which can be exploited in future
work. For example, join dependencies between triple patterns of the query can
be relaxed to connectivity relationships in RDF graphs.

15

References

1. A. Bernstein and C. Kiefer. Imprecise RDQL: Towards generic retrieval in ontolo-
gies using similarity joins. In 21th Annual ACM Symposium on Applied Computing
(SAC/SIGAPP), Dijon, France, 2006.

2. D. Brickley and R. V. Guha, editors. RDF Vocabulary Description Language 1.0:
RDF Schema, W3C Recommendation, 10 February 2004.

3. J. Broekstra. SeRQL: Sesame RDF query language. In In M.
Ehrig et al., editors, SWAP Deliverable 3.2 Method Design, pages 55+68,
http://swap.semanticweb.org/public/Publications/swap-d3.2.pdf, 2003.

4. H. Bulskov, R. Knappe, and T. Andreasen. On querying ontologies and databases.
In 6th International Conference on Flexible Query Answering Systems, pages 191–
202, 2004.

5. K. G. Clark, editor. RDF Data Access Use Cases and Requirements, W3C Working
Draft, 25 March 2005.

6. I. F. Cruz, A. O. Mendelzon, and P. T. Wood. A graphical query language sup-
porting recursion. In SIGMOD Conference, pages 323–330, 1987.

7. T. Gaasterland, P. Godfrey, and J. Minker. Relaxation as a platform for cooperative
answering. J. Intell. Inf. Syst., 1(3/4):293–321, 1992.

8. C. Gutierrez, C. Hurtado, and A. O. Mendelzon. Foundations of semantic web
databases. In 23rd Symposium on Principles of Database Systems, pages 95–106,
2004.

9. P. Haase, J. Broekstra, A. Eberhart, and R. Volz. A comparison of RDF query
languages. In International Semantic Web Conference, 2004.

10. P. Hayes, editor. RDF Semantics, W3C Recommendation, 10 February 2004.
11. Y. Kanza and Y. Sagiv. Flexible queries over semistructured data. In Symposium

on Principles of Database Systems, 2001.
12. F. Manola and E. Miller, editors. RDF Primer, W3C Recommendation, 10 Feb-

ruary 2004.
13. E. Prud’hommeaux and A. Seaborne, editors. SPARQL Query Language for RDF,

W3C Candidate Recommendation, 6 April 2006.
14. H. Stuckenschmidt and F. van Harmelen. Approximating terminological queries.

In 5th International Conference on Flexible Query Answering Systems, pages 329–
343, 2002.

15. K. Wilkinson, C. Sayers, H. Kuno, and D. Reynolds. Efficient RDF storage and
retrieval in Jena. In Proceedings of VLDB Workshop on Semantic Web and Data-
bases, 2003.

