
IRS-III: A Broker for Semantic Web Services based
Applications

Liliana Cabral, John Domingue, Stefania Galizia, Alessio Gugliotta,
Vlad Tanasescu, Carlos Pedrinaci, Barry Norton

Knowledge Media Institute, The Open University, Milton Keynes, UK
{L.S.Cabral, J.B.Domingue}@open.ac.uk

Abstract. In this paper we describe IRS-III which takes a semantic broker
based approach to creating applications from Semantic Web Services by medi-
ating between a service requester and one or more service providers. Business
organisations can view Semantic Web Services as the basic mechanism for in-
tegrating data and processes across applications on the Web. This paper extends
previous publications on IRS by providing an overall description of our frame-
work from the point of view of application development. More specifically, we
describe the IRS-III methodology for building applications using Semantic Web
Services and illustrate our approach through a use case on e-government.

1 Introduction

The integration of business applications on the Web became a far easier task with the
advent of Web Services as part of a trend in XML-based distributed computing. Web
Services enable companies to provide services by exposing process functionalities
through a standard interface description, keeping intact their legacy implementation of
computing systems. Thus, applications in diverse areas such as e-commerce and e-
government can interoperate through Web Services implemented in heterogeneous
platforms. For example, Google (http://www.google.com) has a Web Service inter-
face to its search engine and Amazon (http://www.amazon.com) allows software de-
velopers to access product data through its Web Service platform.

A key problem with the use of standards for Web Service description (e.g. WSDL)
and publishing (e.g. UDDI) is that the syntactic definitions used in these descriptions
do not completely describe the capability of a service and cannot be understood by
software programs. It requires a human to interpret the meaning of inputs, outputs and
applicable constraints as well as the context in which services can be used.

Semantic Web Services (SWS) research aims to automate the development of Web
Service based applications through Semantic Web technology. By providing formal
representations based on ontologies we can facilitate the machine interpretation of
Web Service descriptions. Thus, business organisations can view Semantic Web Ser-
vices as the basic mechanism for integrating data and processes across applications on
the Web.

In this paper we describe IRS-III (Internet Reasoning Service), a framework which
takes a semantic broker based approach to creating applications from Semantic Web
Services by mediating between a service requester and one or more service providers.
This paper extends previous publications on IRS by providing an overall description
of our framework from the point of view of application development. More specifi-
cally, we describe the IRS-III methodology for building applications using Semantic
Web Services and illustrate our approach through a use case on e-government.

The rest of the paper is structured as follows: section 2 describes the overall ap-
proach and design principles of IRS-III; section 3 describes the IRS-III service ontol-
ogy; in section 4 we present the framework including our approach for choreography,
orchestration and mediation; section 5 describes how to develop applications using
IRS-III followed by an example on e-government; finally, the last sections discuss re-
lated work and present our conclusions.

2 IRS-III Approach

The IRS project (http://kmi.open.ac.uk/projects/irs) has the overall aim of supporting
the automated or semi-automated construction of semantically enhanced systems over
the internet. IRS-I [3] supported the creation of knowledge intensive systems struc-
tured according to the UPML framework [10] and IRS-II [9] integrated the UPML
framework with Web Service technology. IRS-III [5] has incorporated and extended
the WSMO ontology [11] so that the implemented infrastructure allows the descrip-
tion, publication and execution of Semantic Web Services (SWS). The meta-model of
WSMO describes four top level elements (in italics hence forth):

• Ontologies,
• Goals,
• Web Services, and
• Mediators.

Ontologies provide the foundation for semantically describing data in order to
achieve semantic interoperability and are used by the three other WSMO elements.
Goals define the tasks that a service requester expects a web service to fulfil. In this
sense they express the service requester’s intent. Web services represent the functional
behaviour of an existing deployed Web Service. The description also outlines how
Web Services communicate (choreography) and how they are composed (orchestra-
tion). Mediators describe the connections between the components above and repre-
sent the type of conceptual mismatches that can occur. In particular, WSMO provides
four kinds of mediators: oo-mediators link and map between heterogeneous ontolo-
gies; ww-mediators link web services to web services; wg-mediators connect web ser-
vices to goals; gg-mediators link different goals.

IRS-III provides the representational and reasoning mechanisms for implementing
the WSMO meta-model mentioned above in order to describe Web Services. Addi-
tionally, IRS-III provides a powerful execution environment which enables these de-
scriptions to be associated to a deployed Web Service and instantiated during
selection, composition, mediation and invocation activities.

The following describes the main application development activities supported by
IRS-III when building Semantic Web Services:

• Using domain ontologies - The concepts and relations involved in the appli-
cation scenario which are used to describe client requests and Web Service ca-
pability are provided in domain ontologies.

• Describing client requests as goals – The request for a service can be ex-
pressed from a business viewpoint and represented as a goal.

• Semantically describing deployed Web Services - The concepts defined in
domain ontologies can be used in a web service description to represent the
types of inputs and outputs of services and in logical expressions for express-
ing applied restrictions. This description can also include many other aspects
such as orchestration and choreography.

• Resolving conceptual mismatches – Mediator descriptions can be used to
declare which mediation service or mapping rules will provide conceptual
alignment between goals, web services and domain ontologies.

• Publishing and invoking semantically described Web Services - Once a
semantic description has been created for a deployed Web Service as above, it
can be registered into IRS-III for goal-based invocation.

The IRS-III tooling consists of a Java API and a browser/editor which support de-

velopers in building applications out of Semantic Web Services. The IRS-III browser
provides an easy to use graphical interface to support the creation of WSMO descrip-
tions, to publish deployed Web Services against these descriptions and then to invoke
the Web Services. The IRS-III Java API provides a data model for our WSMO im-
plementation and remote access to the operations available from the IRS-III server.
Recently, we have also developed a plug-in for WSMO Studio [4] for interoperability
purposes, by aligning the IRS-III and WSMO4J (http://wsmo4j.sourceforge.net) APIs.

2.1 IRS-III Design Principles

The ever growing popularity of the Semantic Web is largely due to the extensive use
of ontologies [7]. By providing an explicit formal model, ontologies facilitate knowl-
edge sharing by machines and humans. The IRS-III approach is based on a set of de-
sign principles which use ontological metamodels as the means underlying selection,
composition, mediation and invocation of Semantic Web Services as follows.

A) Semantic Descriptions as Knowledge Components –Within IRS-III, semantic
descriptions of Web Services are provided as knowledge components representing the
WSMO top-level elements. These knowledge components are executable ontological
meta-models which are semantically linked and can be represented using our ontology
representation language OCML [8].
B) Reasoning is ubiquitous – Reasoning is seen as an essential mechanism of all
Semantic Web Service activities. IRS-III execution environment can easily invoke on-
tological queries over the underlying WSMO conceptual model as well as existing
domain ontologies.

C) Goal-based invocation – A key feature of IRS-III is that Web Service invocation
is capability driven. IRS-III supports this by providing a goal-centric invocation
mechanism. A client application simply asks for a goal to be solved and IRS-III se-
lects an appropriate web service invoking the associated Web Service.
D) Goal-based decomposition – In IRS-III a web service is either executable or com-
posed. A composite web service expresses its functionality in terms of goals, follow-
ing on the previous design principle for invocation.
E) Explicit mediation description – IRS-III uses the mediator description for two
purposes. First, it can represent the role of a specific Web Service as a mediation ser-
vice. Second, the different types of mediators can be associated with different media-
tion activities.
F) One-click Publishing – For supporting users who have an existing system which
they would like to be made available for invocation through IRS-III, we provide ‘one
click’ publishing mechanism of standalone code written in Java or Lisp in addition to
the publishing of existing Web Services through WSDL descriptions.
G) Complete Descriptions - Within an ontological framework, it is easy to represent
distinct aspects of a Web Service for different uses. The next section describes these
aspects in more details.

3 The IRS-III Service Ontology

The IRS-III service ontology has originally been based on the UPML framework
[10] [9], which forms the epistemological basis for IRS-III. This framework has been
extended in order to incorporate the following main aspects specified by the WSMO
conceptual model [11]:

• Non-functional properties – These properties are associated with every main
WSMO element and can range from information about the provider such as
organisation, to information about the service such as category, cost or trust, to
execution requirements such as scalability, security or robustness.

• Goal-related information – a goal represents the user perspective of the re-
quired functional capabilities. It includes a description of the requested web
service capability.

• Web Service functional capabilities – Represent the provider perspective of
what the service does in terms of inputs, output, pre-conditions and post-
conditions. Pre-conditions and post-conditions are expressed by logical ex-
pressions that constrain the state or the type of inputs and outputs.

• Choreography – The choreography specifies how to communicate with a
Web Service. In WSMO this specification is formalized as Abstract State Ma-
chines.

• Grounding – The grounding is associated with the web service choreography
and describes how the semantic declarations are mapped to a syntactic specifi-
cation such as WSDL.

• Orchestration – The orchestration of a web service specifies the decomposi-
tion of its capability in terms of the functionality of other Web Services. In
WSMO this specification is also formalized as Abstract State Machines.

• Mediators – In WSMO, a mediator defines which WSMO top elements are
connected and which type of mismatches can be resolved between them.

The IRS-III implementation of the WSMO conceptual model has been extended in

the following ways.
• Explicit input and output role declaration – IRS-III requires that goals and

web services have input and output roles, which include a name and a seman-
tic type. The declared types are imported from domain ontologies.

• Web Services are linked to Goals via mediators - If a wg-mediator associated
with a web service has a goal as a source, then this web service is considered
to solve that goal. An assumption expression can be introduced for further re-
fining the applicability of the web service.

• GG-mediators provide data-flow between sub-goals – In IRS-III, gg-
mediators are used to link sub-goals within an orchestration, and therefore
they can provide dataflow and data mediation between the sub-goals.

• Web Service can inherit from Goals - Web services which are linked to goals
‘inherit’ the goal’s input and output roles. This means that input role declara-
tions within a web service are not mandatory and can be used to either add ex-
tra input roles or to change an input role type.

• Client Choreography – The provider of a web service must describe the cho-
reography from the viewpoint of the client. This means IRS-III can interpret
the choreography in order to communicate with the deployed Web Service.

• Mediation services are goals – A mediator can declare a goal as the media-
tion service which can simply be invoked. The associated web service actually
performs the necessary data transformation.

4 The IRS-III Framework

IRS-III is based on a distributed architecture composed of the IRS-III server, the
publishing platforms and clients which communicate through the SOAP protocol, as
shown in figure 1. The server handles ontology management and the execution of
knowledge models defined for WSMO. The server also receives SOAP requests
(through the API) from client applications for creating and editing WSMO descrip-
tions of goals, web services and mediators as well as goal-based invocation. At the
lowest level the IRS-III Server uses an HTTP server written in Lisp, which has been
extended with a SOAP handler.

The publishing platforms allow providers of services to attach semantic descrip-
tions to their deployed services and provide handlers to invoke services in a specific
language or platform (Web Services WSDL, Lisp code, Java code, and Web applica-
tions). When a Web Service is published in IRS-III the information about the publish-
ing platform (URL) is also associated with the web service description in order to be
invoked. The IRS-III server is written in Lisp and is available as an executable file.
The publishing platforms are delivered as Java Web applications; and client applica-
tions use the Java API.

HTTP
Server IRS-III Server

OCML

SWS Library

BrowserBrowser

Invocation
Client

Invocation
Client

Publishing
Clients

Publishing
Clients

SOAP
Handler

S
O
A
P

Publishing
Platforms

SOAP Orchestration
Interpreter

Choreography
Interpreter

Mediation
Handler

J
a
v
a

A
P
I

J
a
v
a

A
P
I

Invoker

Web Service WSDLWeb Service WSDL

Lisp CodeLisp Code

Java CodeJava Code

Fig. 1. The IRS-III framework

The main components of IRS-III are explained in the following:
• SWS Library – At the core of the IRS-III server is the SWS library where the

semantic descriptions are stored using our representation language OCML [8].
The library is structured into knowledge models for goals, web services and
mediators. Domain ontologies and knowledge bases (instances) are also avail-
able from the library.

• Choreography Interpreter – This component interprets the grounding and
guarded transitions of the choreography description when requested by the
mediation handler.

• Orchestration Interpreter – This component interprets the workflow of the
orchestration description when requested by the mediation handler.

• Mediation Handler – The brokering activities of IRS-III including selection,
composition and invocation are each supported by a specific mediation com-
ponent within the mediation handler. These activities may involve executing a
mediation service or mapping rules declared in a mediator description.

• Invoker – The invoker component of the server communicates with the pub-
lishing platform, sending the inputs from the client and bringing the result
back to the client.

The following sections give more details of how choreography, orchestration and

mediation of Semantic Web Services are implemented in IRS-III.

4.1 IRS-III Choreography

In IRS-III the choreography describes how to interact with a single deployed Web
Service (client choreography). At the semantic level the choreography is represented
by a set of forward-chaining rules and a grounding declaration expressed in OCML
(see an example in listing 3). A rule executes actions based on communication primi-
tives when the associated conditions (asserted facts) are satisfied. The grounding de-
clares the operations involved in the invocation (communication primitives) and the

associated mappings to the implementation level. More specifically, each operation
input and output is associated with a lifting or lowering function. The grounding also
relates to information about the corresponding publishing platform.

This approach allows the functionality of a Web Service to be realized by calling
one or more declared operations. The set of core communication primitives, which
enables the exchange of messages between IRS-III and a deployed service, are listed
below.

• init-choreography – The initial assertion made by IRS-III when the state of
the choreography is initialized. IRS-III obtains the input values of operations
from the goal invocation request.

• send-message - Calls a specific operation in the associated Web service.
• received-message - Contains the result of a successful send-message for a spe-

cific operation.
• received-error - If an operation generates an error then this primitive is used

including the error message and the name of the operation causing it.
• end-choreography - Stops the choreography. No other rule will be executed.

More details about the formalization of IRS-III choreography, which is based on

Abstract State Machines can be found in [6].

4.2 IRS-III Orchestration

In IRS-III the orchestration is used to describe a composed Web Service. At the se-
mantic level the orchestration is represented by a workflow model expressed in
OCML. The distinguishing characteristic of this model is that the basic unit within
composition is a goal. Thus, the model provides control and data flow constructs over
a set of goals. Further, dataflow and solving mismatches between goals are supported
by mediators. An example of an orchestration description is given in listing 3. The set
of control flow primitives which have been implemented so far in IRS-III are listed
below.

• orch-sequence – Contains the list of goals to be invoked sequentially. A gg-
mediator can optionally be declared between the goals, in which case the out-
put of the source goal is transformed by the mediation service (if there is one)
and used as input of the target goal.

• orch-if – Contains a condition and a body with one or more workflow primi-
tives. The body part is executed if the declared condition is true.

• orch-repeat – Contains a condition and a body with one or more workflow
primitives. The body part is repeated until the declared condition is false.

• orch-get-goal-value - Returns the result of the last invocation of the declared
goal (used for example as part of a condition).

• orch-return – Returns the result of the current goal execution.

Further work is under specification in order to provide a three-layer orchestration

model which integrates this semantic representation with a high-level (UML based)
workflow representation and a low-level Abstract State Machine representation.

4.3 IRS-III Mediation

At the semantic level, IRS-III represents four basic types of conceptual mismatches
that can occur when using Semantic Web Services. These types correspond to the
WSMO models of oo-mediator, wg-mediator, gg-mediator and ww-mediator as de-
scribed in section 2. In general there will be mismatches between the goal requests
and available web services and between the goals themselves. The IRS-III mediation
handler components are responsible for resolving the conceptual mismatches which
may occur by reasoning over the given goal, web service and mediator descriptions.
The mediation handler interprets each type of mediator accordingly during selection,
invocation and orchestration.

Basically, a mediator declares a source component, a target component and either a
mediation service or mapping rules. Hence, the mediator provides a semantic link be-
tween the source component and the target component, which enables mediation ser-
vices or mapping rules to solve mismatches between the two. More details of
mediation in IRS-III can be found in [1].

 In this model, the mediation service is just another goal. As an example (see list-
ing 3), the mediation service of a wg-mediator can transform input values coming
from the source goal into an input value used by the target web service.

Mapping rules are used between two ontologies (source and target components).
These mappings only concern to the concepts used during invocation and consist of
three main mapping primitives:

• maps-to – relation created internally for every mapped instance.
• def-concept-mapping – generate the mappings (maps-to relation) between the

instances of two concepts within an ontology.
• def-relation-mapping – generate a mapping between two relations using a rule

definition within an ontology. As OCML represents concept attributes as rela-
tions, this primitive can be used to map between input and output descriptions.

5 Application Development with IRS-III

A Web application can invoke Semantic Web Services by sending “achieve-goal” re-
quests to IRS-III with the input values from the user. IRS-III will then execute the ap-
propriate deployed Web Services (see figure 2). This Semantic Web Service
brokering scenario enables data and process integration across many business part-
ners. The SWS provided can be shared or used to send common information to the di-
verse participating organisations.

In our methodology for developing applications using SWS with IRS-III we devise
a customer team for creating goal descriptions according to user requests and a devel-
opment team for creating web service descriptions for the available deployed Web
Services. The application developer then creates mediator descriptions which connect
domain ontologies, goals and web services and provide mediation services or map-
ping rules for solving mismatches between ontological elements.

Fig. 2. A simple SWS brokering scenario using IRS-III.

We created a generic application architecture which reflects our methodology for
using IRS-III following on the steps described on section 2 as depicted in figure 3.
Briefly, such architecture enables the functionality provided by existing legacy sys-
tems from the involved business partners to be exposed as Web Services, which are
then semantically annotated and published using the SWS infrastructure. The archi-
tecture consists of four layers as explained next.

SWSSWS SWSSWSSWSSWS

SWSSWS SWSSWS SWSSWS SWSSWS

Presentation

IT
systems

Organisation 1

IT
systems

Organisation 2

DB DB

Web ApplicationWeb Application Web ApplicationWeb Application Web ApplicationWeb Application

Semantic Web
Services
(IRS-III)

WSWS WSWSWSWS WSWS Services
Abstraction

Legacy
Systems

Fig. 3. A generic application architecture using IRS-III.

The legacy system layer consists of the existing data sources and information tech-
nology systems available from each organisation involved in the integrated applica-
tion. The service abstraction layer enables the functionality of the legacy systems to
be available as Web Services, abstracting from the implementation details. Current
Enterprise Application Integration (EAI) software generally enables the easy creation
of the necessary Web Services. Note that for the integration of standard databases the
necessary functionality of the Web Services can simply be implemented as query
(SQL) functions. The SWS layer is based on the Web Services provided by the ser-
vice abstraction layer. The activities in this layer are mainly supported by the IRS-III
infrastructure as outlined in section 2. Given a goal request, IRS-III will: a) discover a
candidate set of web services; b) select the most appropriate one; c) resolve any mis-
matches at the ontological level; and d) invoke the relevant set of Web Services satis-
fying any data, control flow and invocation requirements. To achieve this, IRS-III,
utilizes the set of Semantic Web Service descriptions which are composed of goals,
mediators, and web services, supported by relevant domain ontologies. Finally, the
presentation layer consists of the user interface, which is built on top of the SWS
layer as a Web application accessible using a standard Web browser. Goal invocation

requests are generated with the data provided by the user through the user interface
triggering the invocation of applicable SWS and as a result the execution of deployed
Web Services in the service abstraction layer

In the next section we will further explain our methodology by mapping each ar-
chitecture layer to the development activities related to a specific application in e-
government. In the following we point out some generic considerations when using
SWS as outlined in the architecture described above.

In general, during the requirements phase of application development, the stake-
holders involved in the application scenario should provide information to ontology
builders in order to create or reuse domain ontologies related to the application con-
text. SWS make this process very simple and efficient because the only knowledge
which must be modelled is related to the exposed functionality implemented by the
Web Services. Developers do not need to model entire data sources or create class in-
stances corresponding to thousands of database records; we only model the informa-
tion used by Web Services.

By taking a top-down approach for semantically annotating services, IRS-III facili-
tates querying and reasoning about the capability of the service before its execution
since the semantic relations between the descriptions used (goal, web services, media-
tors and domain ontologies) are well defined in the WSMO metamodel. The reason-
ing needed during the invocation of one service is efficient because it is limited to the
scope of the invocation.

6 Application example on E-government

In the following we present relevant details of the prototype created for the case study
on e-government within the DIP project (http://dip.semanticweb.org) for illustrating
an application based on Semantic Web Services using IRS-III. The main requirement
for applications in E-government relates to the interoperability of data and processes
between services provided by different government agencies.

Our implemented scenario named “Change of Circumstances” involved two gov-
ernmental agencies coordinated by Essex County Council (ECC) in UK. In this sce-
nario a disabled mother moves into her daughter’s home and both are eligible to
receive services and benefits – health and housing equipments – from service provid-
ing agencies. A case worker of the Community Care department helps a citizen to re-
port her change of circumstance (e.g. address) to different agencies involved in the
process.

Following from the architecture in Figure 3, at the presentation level we created an
application user interface for the Change of Circumstances scenario. From the inter-
face a case worker from Essex County Council has access to some functionality such
as “update client details” and “create client assessment”. Behind each functionality
there is one or more associated goal requests such as “update citizen address” or “find
equipment”. A case worker can select a suitable functionality, fill in the required
fields and then submit his request which will trigger the execution of the defined
goals.

At the semantic level, we used IRS-III to provide WSMO descriptions to the de-
ployed Web Services, including mediator descriptions for declaring the mappings be-
tween concepts not aligned. We then published the Web Services in IRS-III. The
relevant integration aspect was the implementation of a composed web service, which
accesses information from two different agencies. This composed service named
“change-address-ws” will be explained in more details in the illustration of the se-
mantic descriptions in the next section. This service is composed of two basic ser-
vices. The first changes the address of the citizen within ECC, and the second service
changes the address of the citizen within the agency providing services related to
housing equipment.

At the service level, we developed a set of Web Services which performed basic
operations on top of the databases of the two involved agencies. These Web services
were deployed into an application server (SAP Exchange Infrastructure) provided by
a partner at SAP in Germany and then published in IRS-III, running at the Open Uni-
versity in England. At the legacy systems level, we recreated anonymous content (due
to privacy reasons) of the existing data sources for each agency involved.

6.1 Semantic Descriptions

In the following we present the domain ontologies and Semantic Web Service de-
scriptions used in the application prototype. Each agency involved in the prototype
development provided a domain ontology which represents its own information con-
cerning the application scenario. A domain ontology can represent the viewpoint of
the user and then be used to define goals or it can represent the viewpoint of a service
provider and therefore be used for describing deployed Web Services. The ontologies
were developed independently but both used a common upper-level ontology describ-
ing general concepts from the e-government domain (e.g. government-organisation,
county-council, public-service, health-service).

Listing 1. Partial source code for concepts in the domain ontologies.

(def-class equipment ()
 ((has-product-code :type string)
 (has-description :type string)
 (has-cost :type string)
 (has-max-user-weight :type integer)
 (has-charging-value :type string)
 (has-product-widtht :type string)
 (has-product-height :type string)
 (has-product-seat-height :type string)))

(def-class citizen-address ()
 ((has-address-key :type integer)
 (has-postcode :type post-code-string)
 (has-premise-number :type integer)
 (has-premise-name :type string)
 (has-street :type string)
 (has-locality :type string)
 (has-town :type string)))

The two developed ontologies are as follow:
• Citizens ontology - Domain ontology created by Essex County Council de-

scribing information related to a citizen assessment for social benefits and ser-

vices. Contain classes defining for example: address, assessment, health prob-
lem, benefit, case worker and others.

• Equipment ontology – Domain ontology created by the Housing Department
describing information related to ordering housing equipments. Contain
classes defining for example: order, equipment, supplier, delivery descriptor
and so on.

Listing 1 shows an excerpt of two concepts defined in the domain ontologies (at-
tributes are self-explanatory). “Equipment” is used as output of the goal (listing 2)
and “citizen-address” as input of one of the web services. Instances of these classes
can be created with the values of attributes provided through the user interface. Oth-
erwise they can be lifted from the results of service invocations.

 Listing 2 shows the definition of goal “find-equipment-goal”. This instance of a
goal defines 2 inputs (“has-input-role” slot) and one output (“has-output-role” slot).
This goal takes the client weight and purpose and returns a list of suitable equipments.

Listing 2. Partial source code for the goal FIND-EQUIPMENT-GOAL.

(DEF-CLASS FIND-EQUIPMENT-GOAL (GOAL)?GOAL
 ((HAS-INPUT-ROLE
 :VALUE HAS-CLIENT-WEIGHT
 :VALUE HAS-CLIENT-PURPOSE)
 (HAS-OUTPUT-ROLE
 :VALUE HAS-SUITABLE-ITEMS-LIST)
 (HAS-CLIENT-WEIGHT :TYPE NUMBER)
 (HAS-CLIENT-PURPOSE :TYPE PURPOSE-DESCRIPTOR)
 (HAS-SUITABLE-ITEM-LIST :TYPE EQUIPMENT)
 (HAS-NON-FUNCTIONAL-PROPERTIES
 :VALUE E-GOV-ASSESS-ITEM-GOAL-NON-FUNCTIONAL-PROPERTIES)))

Listing 3 shows a partial definition of the web service “change-address-ws”. This

description declares a capability and an interface which are described in correspond-
ing classes. The interface declares an orchestration, which is defined in another
class. The “problem solving pattern” slot of the orchestration defines the workflow
(sequence) for the composition of 2 sub-goals. The choreography of one of the sub-
goals is defined by another class (“change-citizen-detatils-ws-choreography”) which
has a grounding and guarded transitions. The grounding includes information about
the WSDL associated with the described service, the lowering of the inputs and lifting
of the output; there is one rule in the guarded transitions which uses the operation
“change-details-operation” defined.

Listing 3. Partial source code for the web service CHANGE-ADDRESS-WS.

(DEF-CLASS CHANGE-ADDRESS-WS (WEB-SERVICE) ?WEB-SERVICE
 ((HAS-CAPABILITY :VALUE CHANGE-ADDRESS-WS-WEB-SERVICE-CAPABILITY)
 (HAS-INTERFACE :VALUE CHANGE-ADDRESS-WS-WEB-SERVICE-INTERFACE)
 (HAS-NON-FUNCTIONAL-PROPERTIES
 :VALUE CHANGE-ADDRESS-WS-WEB-SERVICE-NON-FUNCTIONAL-POPERTIES)))

(DEF-CLASS CHANGE-ADDRESS-WS-WEB-SERVICE-INTERFACE (INTERFACE)?INTERFACE
 ((HAS-ORCHESTRATION :VALUE CHANGE-ADDRESS-WS-ORCHESTRATION)
 (HAS-NON-FUNCTIONAL-PROPERTIES
 :VALUE CHANGE-ADDRESS-WS-INTERFACE-NON-FUNCTIONAL-PROPERTIES)))

(DEF-CLASS CHANGE-ADDRESS-WS-ORCHESTRATION (ORCHESTRATION)
 ((HAS-PROBLEM-SOLVING-PATTERN
 :VALUE CHANGE-ADDRESS-WS-ORCHESTRATION-PROBLEM-SOLVING-PATTERN)))

(DEF-CLASS CHANGE-ADDRESS-WS-ORCHESTRATION-PROBLEM-SOLVING-PATTERN
 (PROBLEM-SOLVING-PATTERN)
 ((HAS-BODY :VALUE
 ((ORCH-SEQUENCE
 CHANGE-CITIZEN-DETAILS-GOAL
 REDIRECT-EQUIPMENT-GOAL)
 (ORCH-RETURN (ORCH-GET-GOAL-VALUE REDIRECT-EQUIPMENT-GOAL))))))

(DEF-CLASS CHANGE-CITIZEN-DETAILS-WS-CHOREOGRAPHY (CHOREOGRAPHY)
 ((HAS-GROUNDING :VALUE
 (GROUNDED-TO-WSDL CHANGE-DETAILS-OPERATION
 (http://changeDetails.wsdl "changeDetails" "changeDetailsPort"
 http://sap.com/research/dip/wp9/elmdb "AXIS")
 ((LOWER-TO HAS_CLIENT_ADDRESS "STRING"))
 (LIFT-TO HAS_ACKNOWLEDGMENT "STRING")))
 (HAS-GUARDED-TRANSITIONS :VALUE
 ((RULE1
 (INIT-CHOREOGRAPHY)
 THEN
 (SEND-MESSAGE 'CHANGE-DETAILS-OPERATION))))

Listing 4 shows the definition of mediator "address-mediator". This is an instance

of a WSMO GG-mediator. It was used to transform “citizen-address” type to a string
used by “redirect-equipment-goal”.

Listing 4. Partial source code for the ADDRESS-MEDIATOR mediator

(DEF-CLASS ADDRESS-MEDIATOR (GG-MEDIATOR) ?MEDIATOR
 ((HAS-SOURCE-COMPONENT :VALUE CHANGE-ADDRESS-GOAL)
 (HAS-TARGET-COMPONENT :VALUE REDIRECT-EQUIPMENT-GOAL)
 (HAS-MEDIATION-SERVICE
 :VALUE ADDRESS-MEDIATION-SERVICE-GOAL)
 (HAS-NON-FUNCTIONAL-PROPERTIES :VALUE
 ADDRESS-MEDIATOR-MEDIATOR-NON-FUNCTIONAL-PROPERTIES))))

7 Related Work and Conclusions

In this paper we have presented our approach to developing Semantic Web Ser-
vices, supporting selection, composition, mediation and invocation of Web Services
as well as our methodology for developing Web applications which use the IRS-III
infrastructure. We have validated our approach in the context of a case study in e-
government, which offers a motivating scenario for the use of Semantic Web Services
with requirements and data provided by real users. In addition we use the case study
to illustrate the semantic descriptions used by IRS-III.

Although a number of Semantic Web Service approaches now exist in addition to
IRS-III and WSMO, including for example, OWL-S (http://www.w3.org/ Submis-
sion/OWL-S), SWSF (http://www.w3.org/Submission/SWSF) and WSDL-S
(http://www.w3.org/Submission/WSDL-S); there are few frameworks which can
comprehensively support the development of Semantic Web Services based applica-
tions. A more detailed comparison between approaches can be found in [2].

Overall, the work on IRS-III is more closely related to WSMX (http://
www.wsmx.org/) since both environments are based on WSMO. However, IRS-III is
founded on a knowledge-based approach and infrastructure which introduces distin-
guishing design principles and semantic primitives for executing choreography, or-
chestration and mediation of Semantic Web Services. The SWS approaches listed

above share a number of common features with IRS-III; in particular, there are simi-
larities between the ontological structures used for Web service functional descrip-
tions. Additionally, these approaches enable grounding to WSDL. The main
differences concern the behavioral aspects of service description; although a process-
oriented abstraction could be constructed for orchestration, a state-based behavior is
explicitly represented in our ontology. Moreover, IRS-III focuses on the problems that
clients need to solve, providing for this reason a goal-centric invocation mechanism.

8 Acknowledgements

This work is supported by the DIP project (Data, Information and Process Integration
with Semantic Web Services) (EU FP6 - 507483). The authors gratefully acknowl-
edge the members of the DIP project and the WSMO working group for their insight-
ful comments on our work. We also acknowledge the contribution of DIP members
Mary Rowlatt, Robert Davies and Leticia Gutierrez from Essex County Council - UK.

References

1. Cabral, L. and Domingue, J.: Mediation of Semantic Web Services in IRS-III. In Workshop
on Mediation in Semantic Web Services (MEDIATE 2005) in conjunction with the 3rd In-
ternational Conference on Service Oriented Computing (ICSOC 2005), Amsterdam (2005)

2. Cabral, L., Domingue, J., Motta, E., Payne, T. and Hakimpour, F. (2004). Approaches to
Semantic Web Services: An Overview and Comparisons. In proceedings of the First Euro-
pean Semantic Web Symposium, ESWS 2004, Heraklion, Crete, Greece. LNCS 3053

3. Crubezy, M., Motta, E., Lu, W. and Musen, M.: Configuring Online Problem-Solving Re-
sources with the Internet Reasoning Service. IEEE Intelligent Systems, 2 (2003) 34-42

4. Dimitrov, M., Simov, A., Montchev, V. and Ognanov, D.: WSMO Studio: an Interfaced
Service Environment for WSMO. In Workshop on WSMO Implementations (WIW 2005)
Frankfurt, Germany. CEUR Workshop Proceedings, Vol. 134 (2005)

5. Domingue, J., Cabral, L., Hakimpour, F., Sell, D. and Motta, E.: IRS-III: A Platform and
Infrastructure for Creating WSMO-based Semantic Web Services. In Workshop on WSMO
Implementations (WIW 2004) Frankfurt, Germany. CEUR Workshop Proceedings, Vol.
113 (2004)

6. Domingue, J., Galizia, S. and Cabral, L.: The Choreography Model for IRS-III. In proceed-
ings of Hawaii International Conference on System Sciences (HICSS 2006), Hawaii (2006)

7. Gruber, T. R.: A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition, 5(2) (1993)

8. Motta, E.: Reusable Components for Knowledge Modelling. IOSPress, Amsterdam (1999)
9. Motta, E., Domingue, J., Cabral, L. and Gaspari, M.: IRS-II: A Framework and Infrastruc-

ture for Semantic Web Services. In proceeding of the 2nd International Semantic Web Con-
ference (ISWC 2003). LNCS 2870 (2003)

10. Omelayenko, B., Crubezy, M., Fensel, D., Benjamins, R., Wielinga, B., Motta, E., Musen,
M., Ding, Y.: UPML: The language and Tool Support for Making the Semantic Web Alive.
In: Fensel, D. et al. (eds.): Spinning the Semantic Web: Bringing the WWW to its Full Po-
tential. MIT Press (2003) 141–170

11. WSMO Working Group. Deliverable D2v1.2 Web Service Modeling Ontology (WSMO).
http://www.wsmo.org/TR/d2/v1.2/ (2005)

